SORPTION OF COBALT FROM AQUEOUS SOLUTION BY WATER HYACINTH ROOTS

Authors

  • Ashraf Ali Arafat Nuclear and Radiological Regulatory Authority, Egypt

Keywords:

Cobalt, removal, Water hyacinth roots, Langmuir isotherm

Abstract

Purpose: In the present study, removal of cobalt (II) from aqueous solutions by using dried roots of water hyacinth has been investigated.

Methodology: The removal of cobalt was examined as a function of initial concentration of cobalt, pH, weight of roots and contact time. Ten different concentrations from 10µg.ml-1 to 100 µg.ml-1 were used. The obtained results are applied for Langmuir, Freundlich and Timken isotherms.

Findings: The results indicated that the removal of cobalt depend on concentration of cobalt, weight of roots, pH and very rapid. Comparing the regressions and error values of the used isotherms indicated that the removal of cobalt by water hyacinth roots follows a Langmuir isotherm better than Freundlich and Timken isotherms. Langmuir dimensionless constant indicated that the removal of cobalt by water hyacinth roots is favorable.

Unique contribution to theory, practice and policy: This investigation indicated a new material successfully removes cobalt (II) from aqueous solutions. And can be used for removing 60Co from aqueous solutions that might be released into the environment from radioactive waste.

Downloads

Download data is not yet available.

References

Abd El-Mageed Y. M., Mohamed, I. R. Atiaa, N. A. and Daher, A. M. (2017). Adsorption of uranium from aqueous solution by dry and chemical modified water hyacinth roots water hyacinth roots. Zagazig J. Agric. Res., 44(3):1029-1038.
Akicin, G., Guidede N., and Saltabas, O. (1993). Zinc removal in strongly Basic solutions by water hyacinth. j. Environ. Sci. Health, A 28(8): 1727 -1735.
Akicin, G., Saltabas, O., and Afsar, H. (1994). Removal of lead by water hyacinth (Eichhornia crassipes). Environ. Sci. Health, A 29 (10): 2177-2183.
Akinbile, C. O., Yusoff, M. S. and Shian, L. M. (2012). Leachate characterization and phytoremediation using Water hyacinth (Eichorrnia crassipes) in Pulau Burung, Malaysia. Bioremediation Journal, 16 (1):9-18.
Al Rmalli, S. W., Harrington, C. F., Ayub, M., and Haris, P. (2005). A biomaterial-based approach for arsenic removal from water. Journal of environmental monitoring, 7: 279-282.
Alvarado, S., Gudez M., Lu-Merú, M. P., Nelson, G., Alvaro, A., Jesúsc, A. C. and Gyula, Z. (2008). Aresnic removal from waters by bioremediation with aquatic plants Water hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresource Technology, 99: 8436-8440.
Aly, A., Shawky, S., El-Tahawy, M., and Kandil, A. T. (2004). Investigation of Eichhornia crassipes as a Bio-indicator and Bio-accumulator for radionuclides along the Rosette Nile branch - Egypt. Proceedings of international eights conference nuclear sciences and applications Cairo, Egypt, 7 - 12 Feb. A special issue of Arab journal of nuclear sciences and applications, 1: 303 - 312.
Aly, A., Amer, H. A., Shawky, S., El-Tahawy, M., and Kandil, A. T. (2009). Instrumental neutron activation analysis of water hyacinth as a bioindicator along the Nile River Egypt. Journal of radioanalytical and nuclear chemistry, 279(2): 611-617.
Aly, A., Amer, H. A., Shawky, S. and Kandil, A. T. (2013). Removal of lanthanum (III) from aqueous solution using non-living water hyacinth roots. Isotope and radiation research, 45 (2): 275-294.
Aly, A., Amer, H. A., Shawky, S. and Kandil A. T. (2014). Separation of thorium from aqueous solution by non-living water hyacinth roots. Technical Journal of engineering and applied sciences, 4(1): 1-13.
Arafat, A. A., Shawky, S. and Kandil, A. T. (2019). Removal of uranium by immobilized water hyacinth roots. World journal of engineering research and technology, 5(1): 33-56.
Bhainsa, K. C. and D'Souza, S. F. (2001). Uranium (VI) biosorption by dried roots of Eichhornia crassipes (water hyacinth). Journal of environmental science health part A28: 1621-1631.
Chattopadhyay, S., Fimmen, R. L, Yates B. J, La. V and Randall, P. (2012). Phytoremediation of mercury - and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes), 14(2):142-61.
Chen, X., Chen, X., Wan, X., Weng, B. and Huang, Q. (2010). Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater. Bioresource Technology, 101: 925-930.
Chua, H. (1998). Bio accumulation of environmental residues of rare earth elements in aquatic flora Eichhornia crassipes (Mart) Solms in Guangding province of china. The Science of total environment, 214: 79-85.
Demirbas, E. (2003). Adsorption of cobalt (II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorption science and technology, 21(10) 951-963.
Ebel, M., Evangelou, M. W. H. and Schaeffer, A. (2007). Cyanide phytoremediation by water hyacinth (Eichhornia crassipes). Chemosphere, 66, 816-823.
El-Khaiary, M. I. (2007). Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water-hyacinth. Journal of Hazardous Materials, 147: 28-36.
El-Khaiary, M. I., Falah A. G., Mahmoud S. M., and Samy, H. (August 2009). Adsorption of methylene blue from aqueous solution by chemically treated water hyacinth. Toxicological and environmental chemistry, 91(6): 1079 -1094.
Gado, M. (2018). Removal of thorium using magnetic graphene oxide polypyrrole composite synthesized from Water hyacinth roots. Iran. J. Chem. Chem. Eng., 37(3): 145-160.
Govindaswamy, S., Schupp, D. A. and Rock, S. A. (2011). Batch and continuous removal of Arsenic using hyacinth roots, International Journal of Phytoremediation, 13:6, 513-527.
Gude, S., and Das, S. N. (January, 2008). Adsorption of chromium (VI) from aqueous solutions by chemically (treated) water hyacinth Eichhornia crassipes. Indian journal of chemical technology, 15: 12-18.
Hasan, S. H., Talat, M., and Rai, S. (2007). Removal of Cd and Zn from aqueous solutions by water hyacinth (Eichhornia crassipes). Bioresources technology, 98: 918-928.
Hussain, S. T., Tariq, M, and Malik, S. A. (2010). Phytoremediation technologies for Ni by water hyacinth. African Journal of Biotechnology, 9(50): 8648-8660.
Ismail, A. S., Abdel Sabour, M. F. and Radwan, R. M. (1996). Water hyacinth as an indicator for heavy metals pollution in different selected sites and water bodies around greater Cairo. Egypt, J. Soil, Sci, 36 (1-4): 343 - 354.
Ivanova, T. M., Bazanov, M. I., Petrov, A. V., Linko, R. V. and Dyumav, K. M. (2006). X-ray photoelectron spectra and structure of cobalt compounds with N-heterocyclic ligands. Russian Journal of Inorganic Chemistry. 51(12): 1945-1948.
Kelley, C., Mielke, R. E., Dimaquibo, D., Curtis, A J., and Dewitt, D. G. (1999). Adsorption of Eu (III) onto roots of Water hyacinth. Environ. Sci. Technol., 33: 1439-1443.
Keskinkan, O., Goksu, M., Yuceer, A., Basibuyuk, M. and Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem. 39: 179-183.
Kim, Y. K. and Lee, K. J. (2001). Synthesis of a magnetic composite resin and its cobalt removal characteristics in aqueous solution. J. Nucl. Sci. Technol., 38 : 785-792.
Lee, J. D. (1999). Química Inorgânica Não Tão Concisa, 1st ed. São Paulo: Edgard Blucher.
Lee, T. A. and Hardy, J. K. (1987). Copper uptake by the water hyacinth. J. Environ. Sci. Health, A 22: 141-160.
Lenka, M., Panda, k. k., and Panda, B. B. (1990). Studies on the ability of water hyacinth (Eichhornia crassipes) to bio concentrate and biomonitor aquatic mercury. Environment pollution, 66: 89-99.
Lombaert, N., Lison, D., Van Hummelen, P., Kirsch-Volders, M. (2008). In vitro expression of hard metal dust (WC-Co) - responsive genes in human peripheral blood mononucleated cells. Toxicol Appl Pharmacol, 227 (2):299-312.
Lorenc-Grabowska, E. and Gryglewicz, G. (2007). Adsorption characteristics of congo red on coal based mesoporous activated carbon. Dyes and pigments. 74: 34-40.
Low, K. S. and Lee, C. K. (1990). Removal of Arsenic from solution by Water hyacinth (Eichhornia crassipes (Mart) Solms). Pertanika, 13(1): 129-132.
Low, K. S., Lee, C. K, and Tai, C. H. (1994). Biosorption of copper by water hyacinth roots. Journal of environmental science and health. Part A 29: 171-188.
Low, K. S. and Lee, C. K. (1997). Non-living biomass of Water hyacinth roots as a sorbent for chromium (III) in aqueous solution. Pertanika J. Sci. and Technol. (Malaysia), 5(2): 147-155.
Lu, X., Kruatrachue, M., Pokethitiyook, P. and Homyok, K. (2004). Removal of cadmium and zinc by Water hyacinth, Eichhornia crassipes. Science Asia, 30: 93-103.
Mohanty, K., Jha, M., Meikap, B. C. and Biswas, M. N. (2006). Biosorption of Cr (VI) from aqueous solutions by Eichhornia crassipes. Chemical engineering journal, 117: 71-77.
Naeem, A., Westerhoff, P. and Mustafa, S. (2007). Vanadium removal by metal (hydr) oxide adsorbents. Water Res., 41: 1596-1602.
Netzer, A. and Hughes, D. E. (1984). Adsorption of copper, lead and cobalt by activated carbon. Water Res., 18: 927-933.
Nir, R., Gasith, A., and Perry, A. S. (1990). Cd uptake and toxicity to water hyacinth: Effects of repeated exposure under controlled conditions. Bull. environ. contam. Toxicol., 44 : 149-157.
O'Keeffe, D. H., Hardy, J. K. and Rao, R. A. (1984). Cd uptake by water hyacinth effects of solution factors. Environment pollution (serial A), 34: 133 -147.
Panda, B. B., Das, B. L., Lenka, M., and Panda, K. K. (1988). Water hyacinth (Eichhormia crassipes) to biomonitor gentoxicity of low level of mercury in aquatic environment. Mutation Res., 206: 275 - 279.
Pereira, F. J., Castro, E. M., Oliveira, C. D., Pires, M. F., Pereira, M. P., Ramos, S. J. and Faquin, V. Lead tolerance of water hyacinth (Eichhornia crassipes Mart. - Pontederiaceae) as defined by anatomical and physiological traits. (Annals of the Brazilian Academy of Sciences), 86(3): 1423-1433.
Quayum, S. L. (2007). Effect of water hyacinth root extract on arsenic level in different organs of arsenic-treated rat. Bangladesh J Pharmacol, 2: 73-80.
Rengaraj, S. and Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and wastewater by ion exchange resins. Water Res., 36(7): 1783-1793.
Sadeek, S. A., Farag, N. M., Kouraim, M. N. and Gado, M. A. (2014). Chemical studies on uranium biosorption by using non-living water hyacinth roots. International journal of advanced research, 2(3): 409-423.
Sadhna, R., Narayanswami, M. S., Hassan, S. H., Rupainwae, D. C., and Yogesh, C. S. (1994). Removal of Cd from waste water by water hyacinth. intern. J. Environmental studies, 46, 251-262.
Saleh, H. M. (2012). Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nuclear engineering and design, 242: 425- 432.
Saraswat, S., Rai, J. P. N. (2010). Heavy metal adsorption from aqueous solution using Eichhornia crassipes dead mass. International journal of mineral processing, 94: 203-206.
Sarkar, D., Das, S. K., Mukherjee, P and Bandyopadhyay, A. (2010). Proposed Adsorption-Diffusion model for characterizing chromium (VI) removal using dried Water hyacinth roots. Clean - Soil, Air, Water, 38 (8): 764-770.
Sarkar, M., Rahman, A. K. M. L. and Bhoumik, N. C. (2017). Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder. Water resources and industry, 17: 1-6.
Schneider, I .A. H., Rubio J., and Smith R. W. (2001). Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation?. International Journal of Mineral Processing, 62, 111-120.
Shawky, S., Abdel Geleel, M., and Aly, A. (2005). Removal of uranium by non-living water hyacinth roots. Journal of radioanalytical and nuclear chemistry. 265: 81-84.
Singh, P. K. and Verma, L. (2017). Removal of Cd (II) ion by activated carbon prepared from Eichhornia Crassipes Mart (ACECM). S-JPSET, 9 (2): 113-118.
Snyder, K. V. W., (October 2006). Removal of arsenic from drinking water by Water hyacinths (Eichhornia crassipes). J. U.S. SJWP, Vol. 1: 41-58.
Swain,G., Adhikari, S. and Mohanty, P. (2014). Phytoremediation of Copper and Cadmium from Water Using Water Hyacinth, Eichhornia crassipes. International Journal of Agricultural Science and Technology (IJAST), 2 (1): 1-7.
Tabbada, R. A., Florendo, P. E., and Santiago, A. E. (1990). Uptake and some physiological effects of mercury on Water hyacinth, Eichhornia crassipes (Mart) Solms. Biotropia, 3: 83-91.
Tan, L., Zhu, D., Zhou, W., Mi, W., Ma, L., and He, W. (2007). Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper. Bioresource Technology, 99: 4460-4466.
Turnquist, T. D., Urig, B. M., and Hardy j. K. (1990). Nickel uptake by water hyacinth. j. Environ .SCI .Health, A25 (8): 897- 912.
Uddin, M. T., Islam, M. S. and Abedin, M. Z. (2007). Adsorption of phenol from aqueous solution by water hyacinth ash. ARPN Journal of engineering and applied sciences, 2(2): 11-17.
Vijayaraghavan, K, Mahadevan, A., Joshi, U., and Balasubramanian, R. (2009). An examination of the uptake of lanthanum from aqueous solution by crap shell particles. Chemical engineering journal,152:116-121.
Win, D. T., Than, M. M. and Tun, S. (Oct. 2002). Iron removal from industrial waters by Water hyacinth, AU J.T. 6(2): 55-60.
Win, D. T., Than, M. M. and Tun, S. (Apr. 2003). Lead removal from industrial waters by Water hyacinth. AU J.T. 6(4): 187-192.
Zaranyika, M. F., and Ndapwadza, T. (1995). Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth (Eichhornia crassipes) in Mukuvise and Manayame Rivers Zimbabwe. J, Environ. SCI. Health, A 30 (1): 157 - 169.
Zheng J. C., Feng, H. M., Lam, M. H. W., Lam P. K. S., Ding, Y. W., and Yu, H. Q. (2009). Removal of Cu (II) in aqueous media by Biosorption using water hyacinth roots as a biosorbent material. Journal of hazardous materials, 171: 780-785.

Downloads

Published

2020-03-09

How to Cite

Arafat, A. A. (2020). SORPTION OF COBALT FROM AQUEOUS SOLUTION BY WATER HYACINTH ROOTS. International Journal of Natural Sciences, 2(1), 1–17. Retrieved from https://www.iprjb.org/journals/index.php/IJNS/article/view/1051