Journal of
 Statistics and Acturial Research (JSAR)

HOMOGENEOUS OPERATORS AND WEIGHTED SHIFT WITH MULTIPLIERS

Dr. Bashir Eissa Mohammad Abedrahaman

HOMOGENEOUS OPERATORS AND WEIGHTED SHIFT WITH MULTIPLIERS

Dr. Bashir Eissa Mohammad Abedrahaman
Nyala University College of Science and Education, Sudan
Corresponding author E-mail bashireissa@Yahoo.com

Abstract

In this paper we show that a homogenous operator is unitary and a reducible homogenous weighted shift is un weighted bilateral shift, also a projective representation is irreducible, and the quasiinvariant is equivalent to a unitary representation.

INTRODUCTION

All Hilbert Spaces in this paper are separable Hilbert spaces over the field of complex numbers. The set of all unitary operators on a Hilbert space H will be denoted by $\mathcal{U}(\mathcal{H})$. When equipped with any of the usual operator topology $\mathcal{U}(\mathcal{H})$ becomes a topological group. All these topologies induce the same Borel structure on $\mathcal{U}(\mathcal{H})$. We shall view $\mathcal{U}(\mathcal{H})$ as a Borel group with this structure. Z, Z^{+}, Z^{-}will denote the set of all integers, non-negative integers and non-positive integers respectively, R and C will denote the Real and Complex numbers. D and T will denote the open unit disc and the unit circle in C , and \bar{D} will denote the closure of D in C , Mob will denote the Mobius group of all bi holomorphic automorphisms of D . Recall that $\mathrm{Mob}=\{$ $\varphi \alpha, \beta \in T, \beta \in D)\}$, where:
$\varphi_{\alpha \beta}(Z)=\alpha \frac{z-\beta}{1-\beta z}, z \in D$.
Mob is topologies via the obvious identification with TxD. With this topology, Mob becomes a topological group. Abstractly, it is isomorphic to $\operatorname{PSL}(2, \mathrm{R})$ and to $\operatorname{PSU}(1.1)$.

Lemma (1):

If T is a homogenous operator such that T^{k} is unitary for some positive integer k then T is unitary.

Proof:

Let $\varphi \in$ Mobs since $\varphi(T)$ is unitary, it follow that $(\phi(T))^{k}$ is unitary equivalent to T^{k} and hence is unitary I_{n} particular taking $\varphi=\varphi_{\beta}$ we find that the inverse and the adjoin of $(T-\beta)^{k}(I-\bar{\beta} T)^{-1}$ are equal $(T-\beta I)^{-k}(I-\bar{\beta} T)^{k}$.

Since T^{k} is unitary implies that $(T-\beta I)^{-k}(I-\bar{\beta} T)^{k}=\left(T^{*}-\bar{\beta} I\right)^{k}(I-\bar{\beta} T)^{k}$ and we get $\left(T^{*}-\bar{\beta} I\right)^{k}\left(I-\beta T^{*}\right)^{-k}$ and hence $T^{*} T=I$ we have $(I-\bar{\beta} T)^{k}\left(I-\beta T^{*}\right)^{k}=(T-\beta I)^{k}\left(T^{*}-\bar{\beta} I\right)^{k}$.

For all $\beta \in D$ the two side of this equation is expanding binomially and the binomial rule is $(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$

By applying this rule we get

$$
\left(\sum_{m=0}^{k}(-1)^{m}\binom{k}{m} \beta^{-m} T^{m}\right)\left(\sum_{n=0}^{k}(-1)^{n}\binom{k}{n} \beta^{n} T^{*_{n}}\right)=\sum_{m=0}^{k} \sum_{n=0}^{k}(-1)^{m}(-1)^{n}\binom{k}{m}\binom{k}{n} \beta^{-m} \beta^{n} T^{m} T^{*_{n}}
$$

$=\sum_{m, n=0}^{k}(-1)^{m+n}\binom{k}{m}\binom{k}{n} \beta^{-m} \beta^{n} T^{m} T^{n}$
$=\sum_{m, n=0}^{k}(-1)^{m+n}\binom{k}{m}\binom{k}{n} \beta^{-m} \beta^{n} T^{k-n} T^{* k-n}$
by equaling the coefficients of powers weight
$T^{* n} T^{m}=T^{k-n} T^{* k-n}$ for $0 \leq m, n \leq k$
Noting that our hypothesis on T implies that T is invertible, we find $\frac{T^{m}}{T^{k-m}}=\frac{T^{* k-m}}{T^{* n}}$ is implies $T^{m+n-k}=T^{* k-m-n}$ for all m, n in this range, in particular taking $m+n=k-1$ we have $T^{-1}=T^{*}$ this T is unitary.

Theorem (2):

Up to unitary equivalence, the only reducible homogenous weighted shift (with non-zero weights) is the un weighted bilateral shift B

Proof:
Any such operator T is a bilateral shifts and its weight sequence $W_{n}, \quad n \in z$ is periodic say with period, we may assume $W_{n}>0$ for all n in z

The spectral radius $r(T)$ of T is given by the following

$$
\left.\left.\begin{array}{l}
r^{+}=\lim _{n \rightarrow \infty}\left[\operatorname{Sup}\left(\omega_{j} \omega_{j+1} 1_{j=0} \ldots \omega_{n+j-1}\right)\right]^{\frac{1}{n}}, r(T) \max \left(\bar{r}, r^{+}\right) \text {where } \\
r^{+}=\lim _{n \rightarrow \infty}\left[\operatorname{Sup}_{j \geq 0}\left(\omega_{j} \omega_{j+1} \cdots \omega_{n+j-1}\right)\right]^{j=0}
\end{array}\right]^{\frac{1}{n}} \text { And } \bar{r}=\lim _{n \rightarrow \infty}\left[\operatorname{Sup}_{j<0}\left(\omega_{j-1} \omega_{j-2} \cdots \omega_{j-n}\right)\right]_{j=0}^{\frac{1}{n}}\right] .
$$

In our case since the weight sequence ω_{n} is periodic with period k this formula for the spectral radius reduces to

$$
r(T)=\left(\omega_{0} \omega_{1} \ldots \omega_{k-1}\right)^{\frac{1}{k}}
$$

Now assume that T is also homogenous, then $r(T)=1$. Thus $\omega_{0} \omega_{1} \ldots \omega_{k-1}$ by the periodicity of the weight sequence, it then follows that $\omega_{n} \omega_{n+1} \ldots \omega_{n+k-1}=1 \forall_{n} \in Z$ therefore it $x_{n}, n \in z$ is the orthogonal basis such that $T x_{n}=x_{n+k}=B^{k} x_{n}$ for all n and hence $T^{k}=B^{k}$, since B is unitary show that T^{k} is unitary therefore T is unitary. Hence $\omega_{n}=\left\|T x_{n}\right\|=\|T\|\left\|x_{n}\right\|$ since $\|T\|=1$ implies $\left\|x_{n}\right\|=1$ for all n. Thus $T=B$.

Definitions (3):

If T is an operator on a Hilbert space \mathscr{H} then a projective representation π of Mobius on \mathscr{H}_{6} is said to be associated with T if the spectrum of T is contained in D and

$$
\begin{equation*}
\phi(T)=\pi(\phi)^{*} T \pi(\phi) \tag{1}
\end{equation*}
$$

For all elements φ of Mob

Theorem (4):

If T is an irreducible homogenous operator ,then T has a projective representation of Mob associated with it- Further this representation is uniquely determined by T.

For any projective representation π of Mobs let $\pi^{\#}$ denote the projective representation of Mobs obtained by composing with the automorphism * of Mobs so

$$
\begin{equation*}
\pi^{\#}(\phi)=\pi\left(\phi^{*}\right) \tag{2}
\end{equation*}
$$

We note.

Proposition (5):

If the projective representation π associated with a homogenous operator T then $\pi^{\#}$ is associated with the adjoin T^{*} of T. Further T is invertible then $\pi^{\#}$ is associated with T^{-1} also it is follows that T and T^{*-1} have the same associated representation .

Theorem (6):

Let \mathcal{H} be a Hilbert space of function on Ω such that the operator T on \mathcal{H} giver by $(T f)(x)=x f(x), x \in \Omega, f \in \mathscr{H}$ is bounded. Suppose these are a multiplier representation π of Mob on \mathscr{H}. Then T is homogenous and π is associated with T.

Definition (7):

Let T be a bounded operator on a Hilbert space \mathscr{H} then T is called a block shift is there is an orthogonal decomposition $\mathscr{H}_{\mathscr{H}}=\oplus_{n \in \mathscr{A}} \omega_{n}$ of $\mathscr{H}_{\mathscr{H}}$ in to non-trivial subspace $\omega_{n}, \quad n \in I \quad$ such that $T\left(\omega_{n}\right) \subseteq \omega_{n+1}$ the following is due to Mark Ordower.

Lemma (8):

If T is an irreducible block shift then the blocks of T are uniquely determined by T.

Proof:

Fix an element $\alpha \in T$ of infinite order and let $V_{n}, n \in I$ be blocks of T then define a unitary S_{1} operator S by $S x=\alpha^{n} x$ for $x \in V_{n}, n \in I$. Notice that by our assumption on α the eigen value $\alpha^{n}, n \in I$ of S are distinct and the blocks V_{n} of T are precisely the eigen spaces of S. If $\omega_{n}, n \in J$ are also blocks of T then define of other unitary S_{1} replacing the blocks V_{n} the blocks ω_{n} by the blocks the definition of S.

A simple computation shows that we have $S T S^{*}=S_{1} T S_{1}^{*}$ hence $S_{1}^{*} S \quad$ commutes with T since $S_{1}^{*} S$ is unitary and T is irreducible and $S_{1}^{*} S$ is a scalar. That is $S_{1}=\beta S$ for $\beta \in T$ therefore S has same eigen spaces as S thus the blocks of T are uniquely determined as eigen spaces of S.

To define the projective representation and multipliers, let G to be a locally compact second countable to topological group then a measurable function.

$$
\pi: \mathrm{G} \rightarrow u(\mathscr{H})
$$

Is called a projective representation of G on the Hilbert space \mathscr{H} if there is function $m: G \times G \rightarrow T$ such that

$$
\begin{equation*}
\pi(1)=1, \pi\left(g_{1} g_{2}\right) m\left(g_{1} g_{2}\right) \pi\left(g_{1}\right) \pi\left(g_{2}\right) \tag{3}
\end{equation*}
$$

Forall $\left(g_{1}, g_{2}\right) G$. Two projective representation π, π_{2} in the Hilbert spaces $\mathscr{H}_{1}, \mathscr{H}_{2}$ will be called the equivalent if there is exists a unitary operator $u: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$, and function $\gamma: G \rightarrow T$. Such that $\pi_{2}(\mathrm{~g}) \alpha(\mathrm{g}) U \pi_{1}(\mathrm{~g})$. For all $(\mathrm{g}) \in G$ we shall identify two projective representation they are equivalent.

Recall that a projective representation π of G is called irreducible if the unitary operator $\pi(\mathrm{g}), \mathrm{g} \in$ Ghave no common non-trivial reducing subspace. Clearly $m: G \times G \rightarrow T$ is a Borel map. In view of equation (3) m satisfies $m(\mathrm{~g}, 1)=1=m(1, \mathrm{~g})$

$$
\begin{equation*}
m\left(g_{1} g_{2}\right) m\left(g_{1}, g_{2}, g_{3}\right)=m\left(g_{1}, g_{2}, g_{3}\right) m\left(g_{2}, g_{3}\right) \tag{4}
\end{equation*}
$$

Proof equation (4) :
From equation (6) $\pi\left(g_{1}, g_{2}\right)=m\left(g_{1}, g_{2}\right) \pi\left(g_{1}\right) \pi\left(g_{2}\right)$ which implies that

$$
m\left(\mathrm{~g}_{1}, \mathrm{~g}_{2}\right)=\pi\left(\mathrm{g}_{1}, \mathrm{~g}_{2}\right) \pi\left(\mathrm{g}_{1}\right) \pi\left(\mathrm{g}_{2}\right)
$$

Then

$$
\begin{gathered}
m(\mathrm{~g}, 1)=\pi(\mathrm{g}) / \pi(\mathrm{g}) \pi(1)=1 \\
m(1, \mathrm{~g})=\pi(\mathrm{g}) / \pi(1) \pi(\mathrm{g})=1
\end{gathered}
$$

And

$$
\begin{aligned}
& m\left(g_{1}, g_{2}, g_{3}\right)=\pi\left(g_{1}, g_{2}, g_{3}\right) / \pi\left(g_{1}, g_{2}\right) \pi\left(g_{3}\right) \text { the left hand side of equation. (4) } \\
& m\left(g_{1}, g_{2}\right) m\left(g_{1}, g_{2}, g_{3}\right)=\frac{\pi\left(g_{1} g_{2}\right)}{\pi\left(g_{1}\right) \pi\left(g_{2}\right)} \cdot \frac{\pi\left(g_{1} g_{2} g_{3}\right)}{\pi\left(g_{1} g_{2}\right) \pi\left(g_{3}\right)}=\frac{\pi\left(g_{1} g_{2} g_{3}\right)}{\pi\left(g_{1}\right)\left(g_{2}\right) \pi\left(g_{3}\right)}
\end{aligned}
$$

And the right hand side

$$
\begin{aligned}
& m\left(g_{1}, g_{2} g_{3}\right) m\left(g_{2}, g_{3}\right)=\frac{\pi\left(g_{1} g_{2} g_{3}\right)}{\pi\left(g_{1}\right) \pi\left(g_{2} g_{3}\right)} \cdot \frac{\pi\left(g_{2} g_{3}\right)}{\pi\left(g_{2}\right) \pi\left(g_{3}\right)}=\frac{\pi\left(g_{1} g_{2} g_{3}\right)}{\pi\left(g_{1}\right) \pi\left(g_{2}\right) \pi\left(g_{3}\right)} \\
& m\left(g_{1}, g_{2}\right) m\left(g_{1} g_{2}, g_{3}\right)=\pi\left(g_{1}, g_{2} g_{3}\right) \pi\left(g_{2}, g_{3}\right)
\end{aligned}
$$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.1, pp 1-19, 2022

For all group of elements $\mathrm{g}, \mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}$ any Borel function m into T satisfying (4) is called a multiplier in the group.

Definition (9):

Two multipliers m and on the group G are called equivalent I there is Borel function $\gamma: G \rightarrow T$ such that $\gamma\left(g_{1}, g_{2}\right) g \tilde{m}\left(g_{1}, g_{2}\right)=\gamma\left(g_{1}\right) \gamma\left(g_{2}\right) m\left(g_{1}, g_{2}\right)$ for all $g_{1}, g_{2} \in G$ and clearly equivalent projective reorientation have multipliers, the multipliers equivalent to the trivial multiplier are called exact. The exact multipliers form a subgroup of the multiplier group, the quotient is called the second co homology group $H^{2}(G, T)$ we shall need .

Theorem (10):

Let G be a connected semi-simple lie group then every projective representation of G is a direct. Integral of irreducible projective representation of G.

Proof:

Let π be a projective representation of G let \bar{G} be the universal cover of G and let $P: \bar{G} \rightarrow G$ be the covering homomorphism. Define projective representation π_{0} of \bar{G} by $\pi_{0}(\tilde{x})=\pi(x)$ where $x=P(\tilde{x})$ a trivial computation of \bar{G} and its multiplier m_{0} is given by $m_{0}(\tilde{x}, \tilde{y})=m(x, y)$ where $x=P(\tilde{x}), y=P(\tilde{y})$.

However since \bar{G} is a connected Lie group $H^{2}(\widetilde{G}, T)$ is trivial therefore m_{0} is exact that is a Borel function
$\gamma: \tilde{G} \rightarrow T$
Such that

$$
\begin{equation*}
m(x, y)=m_{0}(\tilde{x}, \tilde{y})=\gamma(\tilde{x}) \gamma(\tilde{y}) / \gamma(\tilde{x} \tilde{y}) \tag{5}
\end{equation*}
$$

For all $\tilde{x} \tilde{y} \in \tilde{G}$, and $x=P(\tilde{x}), \quad y=P(\tilde{y})$
Now we define the ordinary representation $\tilde{\pi}$ of \tilde{G} by $\tilde{\pi}(\tilde{x})=\alpha(\tilde{x}) \pi_{0}(\tilde{x})$ for $\tilde{x} \in \tilde{G}$ the ordinary representation $\tilde{\pi}_{t}$ of $\tilde{G}: \tilde{\pi}(\tilde{x}=)=\int^{\oplus} \tilde{P}_{t} i(\tilde{x}) d p(t), \tilde{x} \in \tilde{G}$ replacing $\tilde{\pi}$ its definition in term of π,
we get that for each $x \in G, \pi(x)=\int^{\oplus} \gamma(\tilde{x})^{-1} \hat{\pi}_{t} d p(t)$ for any \tilde{x} such that $x=P(\tilde{x})$. So we would like to define $\pi_{t}: G \rightarrow u\left(\mathcal{H}_{t}\right)$ by $\pi_{t}(x)=\gamma(\tilde{x})^{-1} \tilde{\pi}_{t}(\tilde{x})$ for any $\tilde{\pi}$ as above and verity that π_{t} thus defined is an irreducible projective representation of G with multiplier m. But first we must show that π_{t} is well defined, that is if \tilde{x}, \tilde{y} are elements of mapping in the same element x of G under P the we need to show

$$
\begin{equation*}
\gamma(\tilde{x})^{-1} \tilde{\pi}_{t}(\tilde{x})=\gamma(\tilde{y})^{-1} \tilde{\pi}_{t}(\tilde{y}) \tag{6}
\end{equation*}
$$

Let \tilde{Z} be the kernel of the covering map P. Since \tilde{Z} is a discrete normal subgroup of the connected topological group \tilde{G}, \tilde{Z} is a central subgroup of \tilde{G}. Since for each $t, \tilde{\pi}_{t}$ is irreducible it follows that there is a Borel function [44]. $\gamma_{t}: \tilde{Z} \rightarrow T$. Such that $\tilde{\pi}(\tilde{Z})=\gamma_{t}(\tilde{Z}) I$ for all $\tilde{z} \in \tilde{Z}$ we have $\tilde{\pi}(\tilde{Z})=Z(\tilde{Z}) \pi_{0}(\tilde{Z})=\gamma(\tilde{Z}) \pi(1)=\gamma(\tilde{Z}) I$ for all $\tilde{z} \in \tilde{Z}$.

Therefore evaluating $\tilde{\pi}(\tilde{z})$ using its t all in a set of full P measure and all $\tilde{z} \in \tilde{Z}$. Replacing the domain of integration by this subset if need be we may assume that $\gamma_{t}=\gamma$ for all t. Thus

$$
\begin{equation*}
\tilde{\pi}(\tilde{z})=\gamma(\tilde{z}) I \tag{7}
\end{equation*}
$$

for all $\tilde{z} \in \tilde{Z}$ and for all t. Also for $\tilde{x} \in \tilde{G}$ and $\tilde{z} \in \tilde{Z}$ we have

$$
\gamma(\tilde{x}) r(\tilde{Z}) / r(\tilde{x} \tilde{Z})=m(\tilde{x}, \tilde{Z})=m(x, 1)=1
$$

where $x=P(\tilde{x})$ and hence

$$
\begin{equation*}
\gamma(\tilde{x} \tilde{Z})=\gamma(\tilde{x}) \gamma(\tilde{Z}) \tag{8}
\end{equation*}
$$

Now we come back to proof equation (6)
Since $P(\tilde{x})=P(\tilde{y})$, there is $\tilde{z} \in \tilde{Z}$ such that $\tilde{y}=\tilde{x} \tilde{Z}$ using equation (6) we get
$\gamma(\tilde{y})^{1} \tilde{\pi}_{t}(\tilde{y})=\gamma(\tilde{x})^{-1} \gamma(\tilde{Z})^{-1} \tilde{\pi}_{t}(\tilde{x}) \tilde{\pi}_{t}(\tilde{Z}) \quad$ from equation (8) we have $\quad \gamma(\tilde{y})^{1} \tilde{\pi}_{t}(\tilde{y})=$ $\gamma(\tilde{x})^{-1} \tilde{\pi}_{t}(\tilde{x})$ this proves equation (6) and hence π_{t} shows is well defined. Now for $x, y \in G \pi_{t}(x y)=\gamma(\tilde{x} \tilde{y}) \tilde{\pi}_{t}(\tilde{x} \tilde{y})$

We apply $\quad \tilde{\pi}_{t}(\tilde{x} \tilde{y})=\tilde{\pi}_{t}(\tilde{x}) \tilde{\pi}_{t}(\tilde{y})$
We get

$$
\pi_{t}(x y)=\gamma(\tilde{x} \tilde{y}) \tilde{\pi}_{t}(x) \tilde{\pi}_{t}(y)
$$

We use

$$
\pi_{t}(x)=\gamma(x)^{-1} \tilde{\pi}_{t}(\tilde{x})
$$

And $\pi_{t}(x)=\gamma(\tilde{y})^{-1} \tilde{\pi}_{t}(\tilde{x})$
This implies $\quad \tilde{\pi}_{t}(\tilde{x})=\pi_{t}(x) / \gamma(\tilde{x})^{-1}$

$$
\tilde{\pi}_{t}(\tilde{y})=\pi_{t}(y) / \gamma(\tilde{y})^{-1}
$$

by applying eq. (8) we get

$$
\pi_{t}(x y)=\gamma(\tilde{x} \tilde{y}) \frac{\pi_{t}(x y)}{\gamma(\tilde{x})} \cdot \frac{\pi_{t}(x y)}{\gamma(\tilde{y})}=\frac{\gamma(\tilde{y}) r(\tilde{y}) \pi_{t}(x) \pi_{t}(y)}{\gamma(\tilde{x})^{-1} \gamma(\tilde{y})^{-1}}=\frac{\gamma(\tilde{x}) r(\tilde{y})}{\gamma(\tilde{x} \tilde{y})} \pi_{t}(x) \pi_{t}(y)
$$

form eq. (8) we get

$$
\frac{\gamma(\tilde{x}) \gamma(\tilde{y})}{\gamma(\tilde{x} \tilde{y})} \pi_{t}(x) \pi_{t}(y)=m_{0}(\tilde{x}, \tilde{y}) \pi_{t}(x) \pi_{t}(y)
$$

Since $m_{0}(\tilde{x}, \tilde{y})=m(x, y)$ then $\pi_{t}(x y)=m(x, y) \pi_{t}(x) \pi_{t}(y)$ where $\tilde{x}, \tilde{y} \in \tilde{G}$ are such that $x=P(\tilde{x}), y=P(\tilde{y})$ this shows that π_{t} is indeed projective

Representation of G will multiplier m. Since from the definition of π_{t} it is clear that π_{t} and $\tilde{\pi}_{t}$ have the same invariant subspaces and since the latter is irreducible it follows that each π_{t} is irreducible. Thus we have the required decomposition of π as a direct integral of irreducible projective representation π_{t} with the same multiplier as $\pi: \pi=\int^{\oplus} \pi_{t} d p(t)$. As a consequence of theorem (1-10) we have the following corollary, here as above \tilde{G} in the universal cover of
$G, P: \tilde{G} \rightarrow G$ is the covering map. Fix a Borel section $S: G \rightarrow \tilde{G}$ for P such that $S(1)=1$. Notice that the kernel \tilde{Z} of P is naturally identified with the fundamental a group $\pi^{1}(G)$ of G. Define the map .

$$
\begin{equation*}
\alpha: G \times G \rightarrow \tilde{Z} \text { by } \alpha(x, y)=S(x y) S(y)^{-1} S(x)^{-1}, \quad x, y \in G \tag{9}
\end{equation*}
$$

For any character (i.e., continuous homomorphism into the circle group T) of $\pi^{1}(G)$ define $m_{x}: G \times G \rightarrow T m_{x}(x, y)=x(\alpha(x, y)), \quad x, y \in G$. Since \tilde{Z} is a central subgroup of \tilde{G} it is easy to verity that α satisfies the multiplier identity .

Hence m_{x} is a multiplier on G for each character x of \tilde{Z}.

Corollary (11):

Let G be a connected semi-simple Lie group, then the multiplier m_{x} are mutually in equivalent and every multiplier on G is equivalent to m_{x} for a unique characteristic x. In other words $x \rightarrow\left[m_{x}\right]$ defines a group isomorphism $H^{2}(G, T) \equiv \operatorname{HomH},(G, T)$.
for $\varphi \in \operatorname{MÓb}, \varphi$ is non-vanishing analytic on \bar{D}. Hence there is an analytic branch of $\log \varphi^{1}$ on D^{\prime} Fix such a branch for each φ such that
(a) For $\varphi=1, \log \varphi^{\prime}=0$
(b) The map $(\varphi, z) \rightarrow \log \varphi^{\prime}(z)$ from $\operatorname{MÓb} \times \overline{\mathrm{D}}$ into \square is a Borel function with such a determination of the logarithm we define the function $\left(\varphi^{\prime}\right)^{\frac{N}{2}}$ and $N>0$ and $\arg \varphi^{\prime}$ on D^{\prime} by $\varphi\left(\varphi^{\prime}\right)^{\frac{N}{2}}=\exp \left(\frac{N}{2} \log \varphi^{\prime}(z)\right)$, and $\arg \varphi^{\prime}(z)=\operatorname{Im} \log \varphi^{\prime}(z)$ for $n \in z \quad$ let $f_{n}: T \rightarrow T$ defined by $f_{n}(z)=Z^{n}$ in the following all the Hilbert space \mathscr{H}_{t} is spanned by orthogonal of set $\left\{f_{n}: n \in I\right\}$. Where is some subset of Z thus the Hilbert space of functions is specified by the set I and

Research
ISSN 2518-881X
Vol 6, Issue 1, No.1, pp 1-19, 2022
www.iprjb.org
$\left\{\left\|f_{n}\right\|, n \in I\right\}$ for $\varphi \in$ MÓb and complex parameters N and μ define the operator $R_{\lambda \mu}\left(\varphi^{-1}\right)$ on \mathscr{H}_{t} by

$$
\left.R_{\lambda \mu}\left(\varphi^{-1}\right) f(Z)=\varphi^{-1}(Z)^{\frac{N}{2}} \right\rvert\, \varphi^{\prime}(z)^{\mu}(f(\varphi)(z)) \quad z \in T, f \in \mathscr{H}, \varphi \in \operatorname{MÓb}
$$

We obtain a complete result of the irreducible projective representations of Mob is follows that , Holomorphic discrete series representations D_{λ}^{+}here $\lambda>0, \mu=0, I=Z^{+}$and $\left\|f_{n}\right\|^{2}=\frac{\Gamma(n+1) \Gamma(\lambda)}{\Gamma(n+\lambda)}$ if $n=0$ we get $\left\|f_{n}\right\|^{2}=0$ for $n \geq 0$ for each f in the representation space there is an \tilde{f} analytic in D such that f is the non-tangential bounding value of \tilde{f}, by the identification the representation space may be identified with the function Hilbert space $\left(H_{6}\right)^{(N)}$ of analytic functions on $D_{\text {with reproducing kernel }}$

$$
(1-2 \bar{w})^{-N}, z, w \in D .
$$

Principal series representation $C_{\lambda, \delta} \quad-1<\lambda \leq 1, s$ purely imaginary. The equation

$$
\left\|f_{n}\right\|^{2}=\frac{\Gamma(n+1) \Gamma(\lambda)}{\Gamma(n+\lambda)}=\frac{n \Gamma(n) \Gamma(\lambda)}{n \Gamma(n)} \text { Where } \lambda \leq 1 \quad \text { so } \quad\left\|f_{n}\right\|^{2}=1, \quad \text { here } \quad \lambda=\lambda, \mu=\frac{1-\lambda}{2}+s,
$$

$I=Z,\left\|f_{n}\right\|=1$ for all n and the complementary series representation $C_{\lambda, \delta},-1<\lambda<1,0<\delta<\frac{1}{2}(1-|\lambda|)$, here $\lambda=\lambda, \mu=\frac{1}{2}\left(1-\frac{\lambda}{2}\right)+\delta, I=Z$ and

$$
\left\|f_{n}\right\|^{\|_{k=0}^{|n|-1}}{\underset{L}{k \pm \frac{\lambda}{2}}+\frac{1}{2}-\delta}_{k \pm \frac{\lambda}{2}+\frac{1}{2}+\delta}, n \in Z
$$

Where one takes the upper or lower sign according as n is positive or negative.

Theorem (12):

(i) m_{ω} Is a multiplier of Mobs for each $\omega \in T$ up to equivalent $m_{\omega}, \omega \in T$ are all the multipliers in other words, $H^{2}(\mathrm{Mob})$ is naturally isomorphic to T via the map $\omega \mapsto m_{\omega}$.
(ii) For each of the representations of Mob result above.

The associated multiplier is m_{ω} where $\omega e=e^{i \pi N}$ in each case except for the auti-holomorphic discrete series, from the definition of $R_{\lambda, \mu}$ one calculates that the associated multiplier m is given by

$$
m\left(\phi_{1}^{-1}, \phi_{2}^{-1}\right)=\frac{\left(\left(\phi_{2} \phi_{1}\right)^{\prime}(z)\right)^{\frac{\lambda}{2}}}{\left(\phi_{1}^{\prime}(z)^{\frac{\lambda}{2}}\right)\left(\phi_{1}^{\prime}\left(\kappa_{1}(z)\right)\right)^{\frac{\lambda}{2}}}, z \in T
$$

For any two elements φ_{1}, φ_{2} of Mob to show this we have
$\pi(1)=1$ From equation (3) $\pi\left(g_{1}, g_{2}\right)=m\left(g_{1}, g_{2}\right) \pi\left(g_{1}\right) \pi\left(g_{2}\right)$ by applying equation (3) if $R_{\lambda, \mu}=\pi$ then $\left(\pi\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}\right) f\right) z=m\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}\right) \pi\left(\varphi_{1}^{-1}\right),\left(\varphi_{2}^{-1}\right)$ implies that

$$
m\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}\right)=\frac{\left(\pi\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}\right) f\right) z}{\pi\left(\varphi_{1}^{-1}\right),\left(\varphi_{2}^{-1}\right)}
$$

Substituted

$$
R_{\lambda, \mu}=\pi, m\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}\right)=\frac{\left(R_{\lambda, \mu}\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}\right) f\right) z}{R_{\lambda, \mu}\left(\varphi_{1}^{-1}\right),\left(\varphi_{2}^{-1}\right)}
$$

But since

$$
\left(R_{\lambda, \mu}\left(\phi^{-1}\right) f\right) z=\phi^{\prime}(z)^{\frac{\lambda}{2}}\left|\phi^{\prime}(z)\right|^{\lambda}(f \phi(z))
$$

Implies

$$
\begin{aligned}
& m\left(\phi_{1}^{-1} \phi_{2}^{-1}\right)=\frac{\phi_{1}^{-1}(z)^{\frac{\lambda}{2}} \phi_{2}^{-1}(z)^{\frac{\lambda}{2}}\left|\left(\phi_{1} \phi_{2}\right)(z)\right|^{\mu} f\left(\phi_{2}\left(\phi_{2}\right)(z)\right)}{R_{\lambda, \mu} \phi_{1}^{-1} R_{\lambda, \mu} \phi_{2}^{-1}} \\
& =\frac{\phi_{1}^{1}(z)^{\frac{\lambda}{2}} \phi_{2}^{1}(z)^{\frac{\lambda}{2}}\left|\phi_{1} \phi\left({ }_{2} z\right)\right|^{\mu} f\left(\phi_{2}\left(\phi_{2}\right)(z)\right)}{R_{\lambda, \mu}\left(\left(\phi_{1}^{1} \phi_{2}^{1}\right) f\right)(z)}
\end{aligned}
$$

Then

$$
m\left(\phi_{1}^{-1} \phi_{2}^{-1}\right)=\frac{\phi_{1}(z)^{\frac{\lambda}{2}}-\phi_{2}(z)^{\frac{\lambda}{2}}\left|\phi_{1} \phi_{2}(z)\right|^{\mu} f\left(\phi_{2}\left(\phi_{1} z\right)\right)}{\left.\phi_{1}^{\prime}(z)^{\frac{\lambda}{2}}\left(\phi_{2}^{\prime}\left(\phi_{1}\right)(z)\right)^{\frac{\lambda}{2}} \right\rvert\, \phi_{1} \phi_{2}(z)^{\mu} f\left(\phi_{2}\left(\phi_{1} z\right)\right)}=\frac{\left(\phi_{1} \phi_{2}\right)^{\prime}(z)^{\frac{\lambda}{2}}}{\phi_{1}^{1}(z)^{\frac{\lambda}{2}}\left(\phi_{2}^{1}\left(\phi_{1}\right)(z)\right)^{\frac{\lambda}{2}}}
$$

Notice that the right hand side of this equation is an analytic function of z in \mathscr{O} and it is of constant modulus1 in view of the chain rule for differentiation therefore by the maximum modulus principle, this formula is independent of z for z in $\overline{\mathrm{D}}$. Hence we may take $\mathrm{z}=0$ in this formula and thus $m=m_{\omega}$ with $\omega=e^{i \pi N}$ so m is the multiplier associated with $\pi^{\#}$ is \bar{m} since $\bar{D}_{\lambda}=D_{N}^{+\#}$ it follows that if $\pi=\bar{D}_{\lambda}$ is the anti-holomorphic discrete series, then multiplier is m_{ω} where $\omega e=e^{i \pi N}$. The multiplier $m_{\omega}, w \in T$ are naturally bioequivalent (since $w \rightarrow\left[m_{\omega}\right]$) is clearly a group homomorphism from T onto $H^{2}($ MÓb,T $)$ this amounts to verifying that m_{ω} is never exact for $w \neq 1$ this fact may be deduced from corollary (1-11) as follows. Identify Mob with $T \times D \operatorname{via} \varphi_{\alpha, \beta} \mapsto(\alpha, \beta) \quad$ the group low on $T \times D$ is given by $\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \alpha_{2} \cdot \frac{1+\bar{\alpha}_{2} \beta_{1} \bar{\beta}_{2}}{1+\alpha_{2} \bar{\beta}_{1} \beta_{2}}, \frac{\beta_{1}+\alpha_{2} \beta_{2}}{\alpha_{2}+\beta_{1} \beta_{2}}\right)$, the identity in $T \times D$ is $(1,0)$ and inverse map is $(\alpha, \beta)^{-1}=(\bar{\alpha}-\alpha \beta)$ then the universal cover is naturally identified with $R \times D$ taking covering map. $R \times D \rightarrow T \times D$ to be $P(t, \beta)=\left(e^{2 \pi i}, \beta\right)$, the group low on $R \times D$ is determined by the requirement that P be a group homomorphism as follows $\left(t_{1}, \beta_{1}\right)\left(t_{2}, \beta_{2}\right)=t+t_{1} t_{2}+\frac{1}{\pi} \operatorname{Im} \log \left(1+e^{-2 \pi i t} \beta_{1} \bar{\beta}_{2} h\right) \frac{\beta_{1}+e^{2 \pi i t_{2}} \beta_{2}}{e^{2 \pi i_{2}}+\beta_{1} \bar{\beta}_{2}}$
To shows this we have
Let $\alpha_{1}=e^{2 \pi t_{1}}, \alpha_{2}=e^{2 \pi t_{2}}$. Substitute α_{1} and α_{2} in the following equation

$$
\left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1} \alpha_{2} \cdot \frac{1+\alpha_{2}^{\prime} \beta_{1} \bar{\beta}_{2}}{1+\alpha_{2} \beta_{1}^{\prime} \beta_{2}}, \frac{\beta_{1}+\alpha_{2} \beta_{2}}{\alpha_{2}+\beta_{1} \beta_{2}^{\prime}}\right)
$$

We get

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}\right)\left(\alpha_{2} \beta_{2}\right)=\left(e^{2 \pi t_{1}} \cdot e^{2 \pi t_{2}} \cdot \frac{1+e^{-2 \pi i t_{2}}}{1+e^{2 \pi t_{2}} \bar{\beta}_{1} \bar{\beta}_{2}}, \frac{\beta_{1}+e^{2 \pi t_{2}} \beta_{2}}{e^{2 \pi t_{2}}+\beta_{1} \bar{\beta}_{2}}\right) \\
& =\left(e^{2 \pi i\left(t_{1}+t_{2}\right)} \cdot\left(1+e^{-2 \pi i t_{2}} \beta_{1} \bar{\beta}_{2}\right)\left(1+e^{2 \pi i t_{2}} \beta_{1} \bar{\beta}_{2}\right)^{-1}, \frac{\beta_{1}+e^{2 \pi i t_{2}} \beta_{2}}{e^{2 \pi i t_{2}}+\beta_{1} \bar{\beta}_{2}}\right) \\
& =\left(e^{2 \pi i\left(t_{1}+t_{2}\right)} \cdot\left(1+e^{-2 \pi i t_{2}} \beta_{1} \bar{\beta}_{2}\right)\left(1+e^{-2 \pi i t_{2}} \beta_{1} \bar{\beta}_{2}\right), \frac{\beta_{1}+e^{2 \pi i t_{2}} \beta_{2}}{e^{2 \pi i t_{2}}+\beta_{1} \bar{\beta}_{2}}\right) \\
& =\left(e^{2 \pi i\left(t_{1}+t_{2}\right)} \cdot\left(1+e^{-2 \pi i t_{2}} \beta_{1} \beta_{2}^{\prime}\right)^{2}, \frac{\beta_{1}+e^{2 \pi i t_{2}} \beta_{2}}{2 \pi i t_{2}}+\beta_{1} \bar{\beta}_{2}\right),
\end{aligned}
$$

and this gives

$$
\left(t_{1}, \beta_{2}\right)\left(t_{2}, \beta_{2}\right)=T_{1}+T_{2}+\frac{1}{\pi} \operatorname{Im} \log \left(1-e^{-2 \pi i t_{2}} \beta_{1} \beta_{2}, \frac{\beta_{1}+e^{2 \pi i t_{2}} \beta_{2}}{e^{2 \pi i t_{2}}+\beta_{1} \bar{\beta}_{2}}\right)
$$

Where (\log) denote the principle branch of the logarithm on right halt plane.
The identity in $R \times D$ is $(0,0)$ and the inverse map is $(t, \beta)^{-1}=\left(-t-e^{2 \pi i t}\right)$ and the kernel \tilde{Z} of the covering map P is identified with additive group Z via $n \rightarrow(n, 0)$ so we choose a Borel branch of the argument function satisfying $\arg (\bar{Z})=\arg (Z), z \in T$ we make an explicit choice of the Borel function $(\varphi, z) \rightarrow \arg \left(\varphi^{\prime}(z)\right)$ as follows $\arg \varphi_{\alpha, \beta}^{\prime}(z)=\arg (\alpha)-2 \operatorname{Im} \log (1-\beta z)$ let's also choose function $s: T \times D \rightarrow R \times D$ as follows $S(\alpha, \beta)=\left(\frac{1}{2 \pi}(\alpha), \beta\right)$ and easy computation shows that for these choices we have $S\left(\phi_{1} \phi_{2}\right) S\left(\phi_{2}^{-1}\right) S\left(\phi_{1}^{-1}\right)=-n\left(\phi_{1} \phi_{2}\right)$ for φ_{1}, φ_{2} in Mob. Hence we get that for $w \in T, m_{w}=m_{\chi}$ where $\chi=\chi_{w} \quad$ is the character n maps to w^{-n} of Z. Thus the map $w \rightarrow\left[m_{w}\right]$ is but a special case of the isomorphism $\chi \rightarrow m_{\chi}$ of corollary (1-11) to show the simple
representation of the Moby's group let k be the maximal compact subgroup of Mob given by $\left\{\varphi_{\alpha, 0}: \alpha \in T\right\}$ of course k is isomorphic to the circle group T via via $\alpha \rightarrow \varphi_{\alpha, 0}$.

Definition (13):

Let π be a projective representation of Mob and we shall say π is normalized if π / k is an ordinary representation of k.

Lemma (14):

Any projective representation δ of Mob then δ / k is projective representation of k say with multiplier m. But $H^{2}(k)$ so there exists a Borel function $f: k \rightarrow T$ such that $m(x, y)=\frac{f(x) f(y)}{f(x y)}, \quad x, y \in k$. Extend f to a Borel function $g:$ MÓb $\rightarrow \mathrm{T}$. Define π by $\pi(x)=g(x) \delta(x), x \in$ MÓb then π is normalized and equivalent to δ for $n \in Z$, let χ_{n} be the character of T given by $\chi_{n}(x)=x^{-n}, x \in T$ for any normalized projective representation π of Mob and $n \in Z$ let $V_{n} \pi=\left\{v \in \mathscr{H}: \pi(x) v=\chi_{n}(x) v_{1}, \forall x \in T\right\}$ then $\mathcal{H}_{t}=\oplus_{n \in z} V_{n} \pi$. The subspace $V_{n}(\pi)$ are usually called the k-isotopic subspaces of \mathscr{H} put $d_{n}(\pi)=\operatorname{dim} V_{n} \pi$ and $T(\pi)=\left\{n \in Z: d_{n}(\pi) \neq 0\right\}$.

Theorem (15):

If T is an irreducible homogenous operator the T is a block shift. If π is a normalized representation associated with T then the blocks of T are precisely the k-isotopic subspaces.

$$
V_{n}(\pi), \quad n \in T(\pi) .
$$

Proof:

If T is an irreducible block shift then the blocks of T are uniquely determined by T. Then

$$
\begin{equation*}
T\left(V_{n}(\pi)\right) \subseteq V_{n+1}(\pi) \text { For } n \in T(\pi) \tag{10}
\end{equation*}
$$

Indeed since T is irreducible then equation (10) how that π is connected and $b \notin T(\pi)$ then (10) would imply that $\oplus_{n<b} V_{n}(\pi)$ is a non-trivial. Since is also unbounded by theorem (3-1-21) it
follows that be re-indexing, the index can be taken to be either all integer or the non-positive integers, therefore T is a block shift. So it only remains to prove (10). To do this, fix $n \in T(\pi)$ and $v \in_{n}(\pi)$ for $x \in k$ we have $\pi(x) v=\chi_{n}(x) v$. Consequently $\pi(x) T v=\pi\left(x^{-1}\right)^{*} T v$
$=\pi\left(x^{-1}\right)^{*} T\left(x^{-1}\right)(\pi(x) v)$
$=\left(x^{-1} T\right)^{*} T\left(x^{-N} v\right)=x^{-((n+1)} T v$
So $T v \in V_{n+1}(\pi)$, this proves (10).

Lemma (16):

Let T is any homogenous weighted shift, let be the projective representation of associated with T. Then up to equivalent π is one of the representations further:
(a) If T is a forward shift then the associated representation is holomorphic discrete series.
(b) If T is a back word shift then the associated representation is auti-holomorphic discrete series.
(c) If T is a bilateral shift then the associated representation is either principle series or complementary series.

Theorem (17):

Up to unitary equivalence the only homogenous weighted shifts are the ones.

Proof:

Let T be homogenous weighted shift. If T is reducible we are done by theorem (1-2). So assume T is irreducible then by theorem (1-4) there is a projective, representation π of Mob associated with T. By lemma (1-3) π is one of the representation. Further replacing T by T^{*} if necessary, we may assume that T is either a foreword or bi-lateral shift.

According π is either a homomorphic discrete series representation or a principal complementary series representation. Hence $\pi=R_{\lambda, \mu}$ for some parameters $\lambda \mu$ recall that the representation space H_{π} is the closed span of the function $f_{n}, \quad n \in I$ where $f_{n}(z)=Z^{n}, n \in I$

Research
ISSN 2518-881X
Vol 6, Issue 1, No.1, pp 1-19, 2022

www.iprjb.org

and $I \in Z^{+}$in the former case and $I=Z$ in the letter case the element's $f_{n}, n \in I$ form a complete orthogonal set of vectors in \mathscr{H}_{π}, but these vectors are not unit vectors. Their norms are as given before .Since T is a weighted shift with respect to the orthogonal basis of obtained \mathscr{H}_{π} by normalizing $f_{n} s$ where are scalar $a n>0, n \in I$ such that

$$
T f_{n}=a n f_{n+1}, \quad n \in I
$$

Notice that since the $f_{n} s$ are not normalized the numbers an are not the weights of the weighted shift T. These weights are given by follows there the adjoin T^{*} acts by $w_{n}=a\left\|f_{n+1}\right\| /\|f\|, \quad n \in I$

Its follows that the ad joint act by $T^{*} f_{n}=\frac{\left\|f_{n}\right\|^{2}}{\left\|f_{n-1}\right\|^{2}}$ an $-1 f_{n-1}, \quad n \in I$ where one puts $a_{-1}=0$ in case $I=Z^{+}$let M be multiplication operator on \mathcal{H}_{π} define by $M f_{n}=f_{n+1}, \quad n \in I$.

Notice that for each representation is corresponding operator M. Also in case M is invertible M^{*-1} is also exist. Let B be a fixed but arbitrary element of D and let $\varphi_{\beta}=\varphi_{-1, \beta} \in$ Mob. Notice that φ_{β} is an involution and this simplifies the following computation of $\pi\left(\varphi_{\beta}\right)$ a little bit indeed a straight foreword calculation shows that for $\pi=R_{\lambda, \mu}$ we have

$$
\begin{equation*}
\left\langle\pi\left(\varphi_{B}\right) f_{m}, f_{n}\right\rangle=C(-1)^{n} \bar{B}^{n-m}\left\|f_{n}\right\|^{2} \sum_{k \geq(m-n)^{+}} C_{k}(m, n) r^{k}, 0 \leq r \leq 1 \tag{11}
\end{equation*}
$$

where we
have put $r=|\beta|^{2}, C=\varphi_{\beta}^{1}(0)^{\frac{N}{2+m}}$ and $C_{k}(m, n)=\binom{-N-\mu-m}{k+n-\mu}\binom{-\mu+m}{k}$ since π is associated with T from the following equation (4) we have $T \pi\left(\varphi_{\beta}\right)(I-\bar{\beta} T)=\pi\left(\varphi_{\beta}\right)(\beta I-T)$ we analysis the two sides of the above equation we get

$$
T(\pi)\left(\varphi_{\beta}\right)-T \pi\left(\varphi_{\beta}\right) \bar{\beta} T=\pi\left(\varphi_{\beta}\right) \beta-\pi\left(\varphi_{\beta}\right) T
$$

Implies

$$
T \pi\left(\varphi_{\beta}\right)+\pi\left(\varphi_{\beta}\right) T=\pi\left(\varphi_{\beta}\right) \beta+\bar{\beta} T \pi\left(\varphi_{\beta}\right) T \text { and } \bar{\beta} T \pi\left(\varphi_{\beta}\right) T+\pi\left(\varphi_{\beta}\right) T=T \pi\left(\varphi_{\beta}\right) T+\pi\left(\varphi_{\beta}\right) T
$$

where m, n fix in I, we evaluate each side of the above equation at and take the inner product of the resulting vectors with we have for the instance

$$
\left\langle T \pi\left(\varphi_{\beta}\right) T f_{m}, f_{n}\right\rangle=\left\langle\pi\left(\varphi_{\beta}\right) T f_{m}, T^{*} f_{n}\right\rangle=a_{m} \bar{a}_{n-1} \frac{\left\|f_{n}\right\|^{2}}{\left\|f_{n-1}\right\|^{2}}\left\langle\pi\left(\varphi_{\beta}\right) f_{m+1}, f_{n-1}\right\rangle
$$

and similarly for the other three terms. Now substituting from equation (11) we get $\pi\left(\varphi_{\beta}\right) f_{m+1}, f_{n+1}=C(-1)^{n} \bar{B}^{n-m}\left\|f_{n}\right\|^{2} \sum_{k \geq(m-n+2)} C_{k}(m+1, n-1) r^{k}$, by applying equation
(11) in the main equation we have

$$
\left\langle\pi\left(\varphi_{\beta}\right) T f_{m}, T^{*} f_{n}\right\rangle=a_{m} \bar{a}_{n-1} \frac{\left\|f_{n}\right\|^{2}}{\left\|f_{n-1}\right\|^{2}} C(-1)^{n} \bar{B}^{n-m}\left\|h_{n-1}\right\|^{2} \sum_{k \geq(m-n+2)} C_{k}(m+1, n-1) r^{k}
$$

by comparing with the equation (11) we get

$$
\begin{aligned}
& a_{m} \bar{a}_{n-1} C(-1) \bar{B}^{n-m^{n}}\left\|f_{n}\right\|^{2} \sum_{k \geq(m-n+2)} C_{k}(m+1, n-1) r^{k}= \\
& C(-1)^{n} \bar{B}^{n-m}\left\|f_{n}\right\|^{2} \sum_{k \geq(m-n+2)} C_{k}(m, n) r^{k}
\end{aligned}
$$

where $0 \leq r \leq 1$,

$$
a_{m} \bar{a}_{n-1} \sum_{k \geq(m-n+2)} C_{k}(m+1, n-1) r^{k}=\sum_{k \geq(m-n+2)} C_{k}(m, n) r^{k}
$$

We canceling the common factor $C(-1)^{n-1}\left\|f_{n}\right\|^{2} \bar{B}^{n-m}$ we have the following identity in the indeterminate r which obtained from the above

$$
\begin{equation*}
\bar{a}_{n-1} \sum_{k \geq(m-n+2)} C_{k}(m, n-1) r^{k}=a_{m} \sum_{k \geq(m-n+2)} C_{k}(m+1, n) r^{k} \tag{12}
\end{equation*}
$$

Taking $m=n$ in equation (12) and equating the coefficients of r^{\prime} we obtain $(n+1-\mu) a_{n}=(n-\mu) \bar{a}_{n-1}+1 n \in I(13)$

REFERENCE

B. Bagchi and G.Misra Homogenous tuples of multiplication operators on twisted Bergman space (1996).
B. Bagchi and G.Misra the Homogenous shifts J.Funct. Anal 204, (2003), 109-122.
B. Bagchi and G.Misra Homogenous tuples of multiplication operators on twisted Bergman space J, Funct (1996).
Clark .D. N and Misra G, on some homogenous contraction and unitary representation of SU (1, 1), J, OP, theory 30, (1993), 153-170.
G Misra and N.SN. Sastry, Homogenous tuples of operators and homomorphic discrete series representation of some classical group J. Operator theory, (1990).23-32...

