Journal of Statistics and Acturial Research (JSAR)

HOMOGENEOUS OPERATORS AND WEIGHTED SHIFT WITH MULTIPLIERS

Dr. Bashir Eissa Mohammad Abedrahaman

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

HOMOGENEOUS OPERATORS AND WEIGHTED SHIFT

WITH MULTIPLIERS

Dr. Bashir Eissa Mohammad Abedrahaman

Nyala University College of Science and Education, Sudan

Corresponding author E-mail <u>bashireissa@Yahoo.com</u>

Abstract

In this paper we show that a homogenous operator is unitary and a reducible homogenous weighted shift is un weighted bilateral shift, also a projective representation is irreducible, and the quasi-invariant is equivalent to a unitary representation.

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

INTRODUCTION

All Hilbert Spaces in this paper are separable Hilbert spaces over the field of complex numbers. The set of all unitary operators on a Hilbert space H will be denoted by $\mathcal{U}(\mathcal{H})$. When equipped with any of the usual operator topology $\mathcal{U}(\mathcal{H})$ becomes a topological group. All these topologies induce the same Borel structure on $\mathcal{U}(\mathcal{H})$. We shall view $\mathcal{U}(\mathcal{H})$ as a Borel group with this structure. Z, Z^+, Z^- will denote the set of all integers, non-negative integers and non-positive integers respectively, R and C will denote the Real and Complex numbers. D and T will denote the open unit disc and the unit circle in C, and \overline{D} will denote the closure of D in C, Mob will denote the Mobius group of all bi holomorphic automorphisms of D. Recall that Mob = { $\varphi \alpha, \beta \in T, \beta \in D$ }, where : $\varphi_{\alpha\beta}(Z) = \alpha \frac{z-\beta}{1-\beta z}, z \in D.$ (1.1)

Mob is topologies via the obvious identification with TxD. With this topology, Mob becomes a topological group. Abstractly, it is isomorphic to PSL (2, R) and to PSU(1.1).

Lemma (1):

If T is a homogenous operator such that T^k is unitary for some positive integer k then T is unitary.

Proof:

Let $\varphi \in \text{Mobs since } \varphi(T)$ is unitary, it follow that $(\varphi(T))^k$ is unitary equivalent to T^k and hence is unitary I_n particular taking $\varphi = \varphi_\beta$ we find that the inverse and the adjoin of $(T - \beta)^k (I - \overline{\beta}T)^{-1}$ are equal $(T - \beta I)^{-k} (I - \overline{\beta}T)^k$.

Since T^{k} is unitary implies that $(T - \beta I)^{-k} (I - \overline{\beta} T)^{k} = (T^{*} - \overline{\beta} I)^{k} (I - \overline{\beta} T)^{k}$ and we get $(T^{*} - \overline{\beta} I)^{k} (I - \beta T^{*})^{-k}$ and hence $T^{*}T = I$ we have $(I - \overline{\beta} T)^{k} (I - \beta T^{*})^{k} = (T - \beta I)^{k} (T^{*} - \overline{\beta} I)^{k}$. For all $\beta \in D$ the two side of this equation is expanding binomially and the binomial rule is

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$

By applying this rule we get

$$\left(\sum_{m=0}^{k} (-1)^{m} \binom{k}{m} \beta^{-m} T^{m}\right) \left(\sum_{n=0}^{k} (-1)^{n} \binom{k}{n} \beta^{n} T^{*n}\right) = \sum_{m=0}^{k} \sum_{n=0}^{k} (-1)^{m} (-1)^{n} \binom{k}{m} \binom{k}{n} \beta^{-m} \beta^{n} T^{m} T^{*n}$$

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

$$=\sum_{m,n=0}^{k} (-1)^{m+n} \binom{k}{m} \binom{k}{n} \beta^{-m} \beta^{n} T^{m} T^{n}$$
$$=\sum_{m,n=0}^{k} (-1)^{m+n} \binom{k}{m} \binom{k}{n} \beta^{-m} \beta^{n} T^{k-n} T^{*k-n}$$

by equaling the coefficients of powers weight

$$T^{*n}T^m = T^{k-n}T^{*k-n} \quad \text{for} \quad 0 \le m, n \le k$$

Noting that our hypothesis on T implies that T is invertible, we find $\frac{T^m}{T^{k-m}} = \frac{T^{*k-m}}{T^{*n}}$ is implies $T^{m+n-k} = T^{*k-m-n}$ for all m, n in this range, in particular taking m+n=k-1 we have $T^{-1} = T^*$ this T is unitary.

Theorem (2):

Up to unitary equivalence, the only reducible homogenous weighted shift (with non-zero weights) is the un weighted bilateral shift B

Proof:

Any such operator T is a bilateral shifts and its weight sequence W_n , $n \in z$ is periodic say with period, we may assume $W_n > 0$ for all n in z

The spectral radius r(T) of T is given by the following

$$r^{+} = \lim_{n \to \infty} \left[Sup\left(\omega_{j}\omega_{j+1}...\omega_{n+j-1}\right) \right]^{\frac{1}{n}}, r(T) \max(\overline{r}, r^{+}) \text{ where}$$
$$r^{+} = \lim_{n \to \infty} \left[Sup\left(\omega_{j}\omega_{j+1}...\omega_{n+j-1}\right) \right]^{\frac{1}{n}} \text{ And } \overline{r} = \lim_{n \to \infty} \left[Sup\left(\omega_{j-1}\omega_{j-2}...\omega_{j-n}\right) \right]^{\frac{1}{n}}$$

In our case since the weight sequence ω_n is periodic with period k this formula for the spectral radius reduces to

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

$r(T) = (\omega_0 \omega_1 \dots \omega_{k-1})^{\frac{1}{k}}$

Now assume that T is also homogenous, then r(T) = 1. Thus $\omega_0 \omega_1 \dots \omega_{k-1}$ by the periodicity of the weight sequence, it then follows that $\omega_n \omega_{n+1} \dots \omega_{n+k-1} = 1 \forall_n \in \mathbb{Z}$ therefore it $x_n, n \in \mathbb{Z}$ is the orthogonal basis such that $Tx_n = x_{n+k} = B^k x_n$ for all n and hence $T^k = B^k$, since B is unitary show that T^k is unitary therefore T is unitary. Hence $\omega_n = ||Tx_n|| = ||T|| ||x_n||$ since ||T|| = 1 implies $||x_n|| = 1$ for all n. Thus T = B.

Definitions (3):

If T is an operator on a Hilbert space \mathcal{H} then a projective representation π of Mobius on \mathcal{H} is said to be associated with T if the spectrum of T is contained in D and

$$\phi(T) = \pi(\phi)^* T \pi(\phi) \tag{1}$$

For all elements φ of Mob

Theorem (4):

If T is an irreducible homogenous operator, then T has a projective representation of Mob associated with it-Further this representation is uniquely determined by T.

For any projective representation π of Mobs let π^{*} denote the projective representation of Mobs obtained by composing with the automorphism * of Mobs so

$$\pi^{\#}(\phi) = \pi(\phi^{*}) \tag{2}$$

We note.

Proposition (5):

If the projective representation π associated with a homogenous operator T then $\pi^{\#}$ is associated with the adjoin T^* of T. Further T is invertible then $\pi^{\#}$ is associated with T^{-1} also it is follows that T and T^{*-1} have the same associated representation.

www.iprjb.org

Theorem (6):

Let \mathcal{H} be a Hilbert space of function on Ω such that the operator T on \mathcal{H} giver by $(Tf)(x) = xf(x), x \in \Omega, f \in \mathcal{H}$ is bounded. Suppose these are a multiplier representation π of Mob on \mathcal{H} . Then T is homogenous and π is associated with T.

Definition (7):

Let *T* be a bounded operator on a Hilbert space \mathcal{H} then T is called a block shift is there is an orthogonal decomposition $\mathcal{H} = \bigoplus_{n \in \mathcal{J}} \omega_n$ of \mathcal{H} in to non-trivial subspace ω_n , $n \in I$ such that $T(\omega_n) \subseteq \omega_{n+1}$ the following is due to Mark Ordower.

Lemma (8):

If T is an irreducible block shift then the blocks of T are uniquely determined by T.

Proof:

Fix an element $\alpha \in T$ of infinite order and let $V_n, n \in I$ be blocks of T then define a unitary S_1 operator S by $Sx = \alpha^n x$ for $x \in V_n$, $n \in I$. Notice that by our assumption on α the eigen value $\alpha^n, n \in I$ of S are distinct and the blocks V_n of T are precisely the eigen spaces of S. If $\omega_n, n \in J$ are also blocks of T then define of other unitary S_1 replacing the blocks V_n the blocks ω_n by the blocks the definition of S.

A simple computation shows that we have $STS^* = S_1TS_1^*$ hence S_1^*S commutes with Tsince S_1^*S is unitary and T is irreducible and S_1^*S is a scalar. That is $S_1 = \beta S$ for $\beta \in T$ therefore S has same eigen spaces as S thus the blocks of T are uniquely determined as eigen spaces of S.

To define the projective representation and multipliers, let G to be a locally compact second countable to topological group then a measurable function.

 $\pi: \mathbf{G} \to u(\mathfrak{H})$

Is called a projective representation of *G* on the Hilbert space \mathcal{H} if there is function $m: G \times G \to T$ such that

www.iprjb.org

$$\pi(1) = 1, \ \pi(\mathsf{g}_1\mathsf{g}_2)m(\mathsf{g}_1\mathsf{g}_2) \ \pi(\mathsf{g}_1)\pi(\mathsf{g}_2) \tag{3}$$

Forall $(g_1, g_2)G$. Two projective representation π , π_2 in the Hilbert spaces \mathcal{H}_1 , \mathcal{H}_2 will be called the equivalent if there is exists a unitary operator $u: \mathcal{H}_1 \to \mathcal{H}_2$, and function $\gamma: G \to T$. Such that $\pi_2(g)\alpha(g)U\pi_1(g)$. For all $(g) \in G$ we shall identify two projective representation they are equivalent.

Recall that a projective representation π of G is called irreducible if the unitary operator $\pi(g), g \in G$ have no common non-trivial reducing subspace. Clearly $m: G \times G \to T$ is a Borel map. In view of equation (3) m satisfies m(g,1) = 1 = m(1,g)

$$m(g_1g_2)m(g_1,g_2,g_3) = m(g_1,g_2,g_3)m(g_2,g_3)$$
(4)

Proof equation (4):

From equation (6) $\pi(g_1,g_2) = m(g_1,g_2)\pi(g_1)\pi(g_2)$ which implies that

$$m(\mathbf{g}_1,\mathbf{g}_2) = \pi(\mathbf{g}_1,\mathbf{g}_2)\pi(\mathbf{g}_1)\pi(\mathbf{g}_2)$$

Then

$$m(g,1) = \pi(g) / \pi(g) \pi(1) = 1$$

 $m(1,g) = \pi(g) / \pi(1) \pi(g) = 1$

And

 $m(\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3) = \pi(\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3) / \pi(\mathbf{g}_1, \mathbf{g}_2) \pi(\mathbf{g}_3) \text{ the left hand side of equation. (4)}$

$$m(g_1,g_2)m(g_1,g_2,g_3) = \frac{\pi(g_1g_2)}{\pi(g_1)\pi(g_2)} \cdot \frac{\pi(g_1g_2g_3)}{\pi(g_1g_2)\pi(g_3)} = \frac{\pi(g_1g_2g_3)}{\pi(g_1)(g_2)\pi(g_3)}$$

And the right hand side

$$m(g_1, g_2g_3)m(g_2, g_3) = \frac{\pi(g_1g_2g_3)}{\pi(g_1)\pi(g_2g_3)} \cdot \frac{\pi(g_2g_3)}{\pi(g_2)\pi(g_3)} = \frac{\pi(g_1g_2g_3)}{\pi(g_1)\pi(g_2)\pi(g_3)}$$
$$m(g_1, g_2)m(g_1g_2, g_3) = \pi(g_1, g_2g_3)\pi(g_2, g_3)$$

www.iprjb.org

For all group of elements g_1,g_2,g_3 any Borel function m into T satisfying (4) is called a multiplier in the group.

Definition (9):

Two multipliers m and on the group G are called equivalent I there is Borel function $\gamma: G \to T$ such that $\gamma(g_1, g_2)g\tilde{m}(g_1, g_2) = \gamma(g_1)\gamma(g_2)m(g_1, g_2)$ for all $g_1, g_2 \in G$ and clearly equivalent projective reorientation have multipliers, the multipliers equivalent to the trivial multiplier are called exact. The exact multipliers form a subgroup of the multiplier group, the quotient is called the second co homology group $H^2(G,T)$ we shall need.

Theorem (10):

Let G be a connected semi-simple lie group then every projective representation of G is a direct. Integral of irreducible projective representation of G.

Proof:

Let π be a projective representation of G let \overline{G} be the universal cover of G and let $P:\overline{G} \to G$ be the covering homomorphism. Define projective representation π_0 of \overline{G} by $\pi_0(\tilde{x}) = \pi(x)$ where $x = P(\tilde{x})$ a trivial computation of \overline{G} and its multiplier m_0 is given by $m_0(\tilde{x}, \tilde{y}) = m(x, y)$ where $x = P(\tilde{x}), y = P(\tilde{y})$.

However since \overline{G} is a connected Lie group $H^2(\widetilde{G},T)$ is trivial therefore m_0 is exact that is a Borel function

 $\gamma: \tilde{G} \to T$

Such that

$$m(x, y) = m_0(\tilde{x}, \tilde{y}) = \gamma(\tilde{x})\gamma(\tilde{y})/\gamma(\tilde{x}\tilde{y})$$
(5)

For all $\widetilde{x}\widetilde{y} \in \widetilde{G}$, and $x = P(\widetilde{x}), \quad y = P(\widetilde{y})$

Now we define the ordinary representation $\hat{\pi}$ of \tilde{G} by $\hat{\pi}(\tilde{x}) = \alpha(\tilde{x})\pi_0(\tilde{x})$ for $\tilde{x} \in \tilde{G}$ the ordinary

representation $\tilde{\pi}_t$ of $\tilde{G}: \hat{\pi}(\tilde{x}=) = \int_{0}^{\oplus} \tilde{P}_t i(\tilde{x}) dp(t)$, $\tilde{x} \in \tilde{G}$ replacing $\tilde{\pi}$ its definition in term of π ,

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

we get that for each $x \in G$, $\pi(x) = \int_{0}^{\oplus} \gamma(\tilde{x})^{-1} \hat{\pi}_{t} dp(t)$ for any \tilde{x} such that $x = P(\tilde{x})$. So we would

like to define $\pi_t : G \to u(\mathfrak{H})$ by $\pi_t(x) = \gamma(\tilde{x})^{-1} \tilde{\pi}_t(\tilde{x})$ for any $\tilde{\pi}$ as above and verity that π_t thus defined is an irreducible projective representation of *G* with multiplier m. But first we must show that π_t is well defined, that is if \tilde{x}, \tilde{y} are elements of mapping in the same element *x* of *G* under *P* the we need to show

$$\gamma(\tilde{x})^{-1} \tilde{\pi}_{t}(\tilde{x}) = \gamma(\tilde{y})^{-1} \tilde{\pi}_{t}(\tilde{y})$$
(6)

Let \tilde{Z} be the kernel of the covering map P. Since \tilde{Z} is a discrete normal subgroup of the connected topological group \tilde{G}, \tilde{Z} is a central subgroup of \tilde{G} . Since for each $t, \tilde{\pi}_t$ is irreducible it follows that there is a Borel function [44]. $\gamma_t : \tilde{Z} \to T$. Such that $\tilde{\pi}(\tilde{Z}) = \gamma_t(\tilde{Z})I$ for all $\tilde{z} \in \tilde{Z}$ we have $\tilde{\pi}(\tilde{Z}) = Z(\tilde{Z})\pi_0(\tilde{Z}) = \gamma(\tilde{Z})\pi(1) = \gamma(\tilde{Z})I$ for all $\tilde{z} \in \tilde{Z}$.

Therefore evaluating $\tilde{\pi}(\tilde{z})$ using its *t* all in a set of full *P* measure and all $\tilde{z} \in \tilde{Z}$. Replacing the domain of integration by this subset if need be we may assume that $\gamma_t = \gamma$ for all *t*. Thus

$$\tilde{\pi}(\tilde{z}) = \gamma(\tilde{z})I \tag{7}$$

for all $\tilde{z} \in \tilde{Z}$ and for all t. Also for $\tilde{x} \in \tilde{G}$ and $\tilde{z} \in \tilde{Z}$ we have

$$\gamma(\tilde{x})r(\tilde{Z})/r(\tilde{x}\tilde{Z}) = m(\tilde{x},\tilde{Z}) = m(x,1) = 1$$

where $x = P(\tilde{x})$ and hence

$$\gamma\left(\tilde{x}\tilde{Z}\right) = \gamma\left(\tilde{x}\right)\gamma\left(\tilde{Z}\right) \qquad (8)$$

Now we come back to proof equation (6)

Since $P(\tilde{x}) = P(\tilde{y})$, there is $\tilde{z} \in \tilde{Z}$ such that $\tilde{y} = \tilde{x}\tilde{Z}$ using equation (6) we get

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

 $\gamma(\tilde{y})^{1} \tilde{\pi}_{t}(\tilde{y}) = \gamma(\tilde{x})^{-1} \gamma(\tilde{Z})^{-1} \tilde{\pi}_{t}(\tilde{x}) \tilde{\pi}_{t}(\tilde{Z}) \text{ from equation (8) we have } \gamma(\tilde{y})^{1} \tilde{\pi}_{t}(\tilde{y}) = \gamma(\tilde{x})^{-1} \tilde{\pi}_{t}(\tilde{x}) \text{ this proves equation (6) and hence } \pi_{t} \text{ shows is well defined. Now for } x, y \in G \pi_{t}(xy) = \gamma(\tilde{x}\tilde{y}) \tilde{\pi}_{t}(\tilde{x}\tilde{y})$ We apply $\tilde{\pi}_{t}(\tilde{x}\tilde{y}) = \tilde{\pi}_{t}(\tilde{x}) \tilde{\pi}_{t}(\tilde{y})$ We get $\pi_{t}(xy) = \gamma(\tilde{x}\tilde{y}) \tilde{\pi}_{t}(x) \tilde{\pi}_{t}(y)$ We use $\pi_{t}(x) = \gamma(x)^{-1} \tilde{\pi}_{t}(\tilde{x})$ This implies $\tilde{\pi}_{t}(\tilde{x}) = \pi_{t}(x)/\gamma(\tilde{x})^{-1}$ $\tilde{\pi}_{t}(\tilde{y}) = \pi_{t}(y)/\gamma(\tilde{y})^{-1}$ by applying eq. (8) we get $\pi(xy) = \gamma(\tilde{x}) r(\tilde{x}) r(\tilde{y}) \pi(x) \pi(y) = \gamma(\tilde{x}) r(\tilde{y}) r(\tilde{y})$

$$\pi_{t}(xy) = \gamma(\tilde{x}\tilde{y})\frac{\pi_{t}(xy)}{\gamma(\tilde{x})} \cdot \frac{\pi_{t}(xy)}{\gamma(\tilde{y})} = \frac{\gamma(\tilde{y})r(\tilde{y})\pi_{t}(x)\pi_{t}(y)}{\gamma(\tilde{x})^{-1}\gamma(\tilde{y})^{-1}} = \frac{\gamma(\tilde{x})r(\tilde{y})}{\gamma(\tilde{x}\tilde{y})}\pi_{t}(x)\pi_{t}(y)$$

form eq. (8) we get

$$\frac{\gamma(\tilde{x})\gamma(\tilde{y})}{\gamma(\tilde{x}\tilde{y})}\pi_t(x)\pi_t(y) = m_0(\tilde{x},\tilde{y})\pi_t(x)\pi_t(y)$$

Since $m_0(\tilde{x}, \tilde{y}) = m(x, y)$ then $\pi_t(xy) = m(x, y)\pi_t(x)\pi_t(y)$ where $\tilde{x}, \tilde{y} \in \tilde{G}$ are such that $x = P(\tilde{x}), y = P(\tilde{y})$ this shows that π_t is indeed projective

Representation of *G* will multiplier *m*. Since from the definition of π_t it is clear that π_t and $\tilde{\pi}_t$ have the same invariant subspaces and since the latter is irreducible it follows that each π_t is irreducible. Thus we have the required decomposition of π as a direct integral of irreducible projective representation π_t with the same multiplier as $\pi : \pi = \int_{0}^{\oplus} \pi_t dp(t)$. As a consequence of theorem (1-10) we have the following corollary, here as above \tilde{G} in the universal cover of

www.iprjb.org

 $G, P: \tilde{G} \to G$ is the covering map. Fix a Borel section $S: G \to \tilde{G}$ for P such that S(1)=1. Notice that the kernel \tilde{Z} of P is naturally identified with the fundamental a group $\pi^1(G)$ of G. Define the map.

$$\alpha: G \times G \to \widetilde{Z} \text{ by } \alpha(x, y) = S(xy)S(y)^{-1}S(x)^{-1}, \quad x, y \in G$$
(9)

For any character (i.e., continuous homomorphism into the circle group T) of $\pi^1(G)$ define $m_x: G \times G \to T \ m_x(x, y) = x(\alpha(x, y)), \quad x, y \in G$. Since \tilde{Z} is a central subgroup of \tilde{G} it is easy to verity that α satisfies the multiplier identity.

Hence m_x is a multiplier on G for each character x of \tilde{Z} .

Corollary (11):

Let G be a connected semi-simple Lie group, then the multiplier m_x are mutually in equivalent and every multiplier on G is equivalent to m_x for a unique characteristic x. In other words $x \rightarrow [m_x]$ defines a group isomorphism $H^2(G,T) \equiv HomH, (G,T)$.

for $\varphi \in MODb$, φ is non-vanishing analytic on \overline{D} . Hence there is an analytic branch of $\log \varphi^1$ on D' Fix such a branch for each φ such that

(a) For
$$\varphi = 1$$
, $\log \varphi' = 0$

(b) The map $(\varphi, z) \to \log \varphi'(z)$ from $MOD \times \overline{D}$ into \Box is a Borel function with such a determination of the logarithm we define the function $(\varphi')^{\frac{N}{2}}$ and N > 0 and $\arg \varphi'$ on D' by $\varphi(\varphi')^{\frac{N}{2}} = \exp\left(\frac{N}{2}\log \varphi'(z)\right)$, and $\arg \varphi'(z) = \operatorname{Im} \log \varphi'(z)$ for $n \in z$ let $f_n : T \to T$ defined by $f_n(z) = Z^n$ in the following all the Hilbert space \mathcal{H} is spanned by orthogonal of set $\{f_n : n \in I\}$. Where is some subset of Z thus the Hilbert space of functions is specified by the set I and

www.iprjb.org

 $\{ \|f_n\|, n \in I \}$ for $\varphi \in MOO$ and complex parameters N and μ define the operator $R_{\lambda\mu}(\varphi^{-1})$ on \mathcal{H} by

$$R_{\lambda\mu}(\varphi^{-1})f(Z) = \varphi^{-1}(Z)^{\frac{N}{2}} |\varphi'(z)|^{\mu} (f(\varphi)(z)) \qquad z \in T, f \in \mathcal{H}, \varphi \in \mathsf{M}\acute{O}\mathsf{b}$$

We obtain a complete result of the irreducible projective representations of Mob is follows that , Holomorphic discrete series representations D_{λ}^{+} here $\lambda > 0$, $\mu = 0$, $I = Z^{+}$ and $\|f_n\|^2 = \frac{\Gamma(n+1)\Gamma(\lambda)}{\Gamma(n+\lambda)}$ if n = 0 we get $\|f_n\|^2 = 0$ for $n \ge 0$ for each f in the representation space there is an \tilde{f} analytic in D such that f is the non-tangential bounding value of \tilde{f} , by the identification the representation space may be identified with the function Hilbert space $(\Re)^{(N)}$

of analytic functions on $\,\mathfrak{D}\,\text{with}\,\text{reproducing}\,\text{kernel}$

$$(1-2\overline{w})^{-N}, z, w \in D.$$

Principal series representation $C_{\lambda,\delta}$ $-1 < \lambda \le 1, s$ purely imaginary. The equation

$$\begin{split} \|f_n\|^2 &= \frac{\Gamma(n+1)\Gamma(\lambda)}{\Gamma(n+\lambda)} = \frac{n\Gamma(n)\Gamma(\lambda)}{n\Gamma(n)} \\ \text{Where } \lambda \leq 1 \quad \text{so} \quad \|f_n\|^2 = 1 \text{, here } \lambda = \lambda, \mu = \frac{1-\lambda}{2} + s \text{,} \\ I &= Z \text{, } \|f_n\| = 1 \quad \text{for all } n \quad \text{and the complementary series representation} \\ C_{\lambda,\delta} \text{, } -1 < \lambda < 1 \text{, } 0 < \delta < \frac{1}{2} (1-|\lambda|) \text{, here } \lambda = \lambda, \mu = \frac{1}{2} \left(1 - \frac{\lambda}{2}\right) + \delta \text{, } I = Z \text{ and} \\ \|f_n\|^2 \prod_{k=0}^{|n|-1} \frac{k \pm \frac{\lambda}{2} + \frac{1}{2} - \delta}{k \pm \frac{\lambda}{2} + \frac{1}{2} + \delta} \text{, } n \in Z \end{split}$$

Where one takes the upper or lower sign according as n is positive or negative.

Theorem (12):

(i) m_{ω} Is a multiplier of Mobs for each $\omega \in T$ up to equivalent m_{ω} , $\omega \in T$ are all the multipliers in other words, H^2 (Mob) is naturally isomorphic to T via the map $\omega \mapsto m_{\omega}$.

www.iprjb.org

(ii) For each of the representations of Mob result above.

The associated multiplier is m_{ω} where $\omega e = e^{i\pi V}$ in each case except for the auti-holomorphic discrete series, from the definition of $R_{\lambda,\mu}$ one calculates that the associated multiplier m is given by

$$m(\phi_{1}^{-1},\phi_{2}^{-1}) = \frac{\left(\left(\phi_{2}\phi_{1}\right)'(z)\right)^{\frac{\lambda}{2}}}{\left(\phi_{1}'(z)^{\frac{\lambda}{2}}\right)\left(\phi_{1}'(\kappa_{1}(z))\right)^{\frac{\lambda}{2}}}, z \in T$$

For any two elements φ_1, φ_2 of Mob to show this we have

 $\pi(1) = 1 \text{ From equation } (3) \pi(\mathsf{g}_1, \mathsf{g}_2) = m(\mathsf{g}_1, \mathsf{g}_2) \pi(\mathsf{g}_1) \pi(\mathsf{g}_2) \text{ by applying equation } (3) \text{ if } R_{\lambda,\mu} = \pi$ then $\left(\pi(\varphi_1^{-1}, \varphi_2^{-1})f\right)z = m\left(\varphi_1^{-1}, \varphi_2^{-1}\right)\pi(\varphi_1^{-1}), (\varphi_2^{-1}) \text{ implies that}$ $m\left(\varphi_1^{-1}, \varphi_2^{-1}\right) = \frac{\left(\pi(\varphi_1^{-1}, \varphi_2^{-1})f\right)z}{\pi(\varphi_1^{-1}), (\varphi_2^{-1})}$

Substituted

$$R_{\lambda,\mu} = \pi, \ m\left(\varphi_1^{-1}, \varphi_2^{-1}\right) = \frac{\left(R_{\lambda,\mu}\left(\varphi_1^{-1}, \varphi_2^{-1}\right)f\right)z}{R_{\lambda,\mu}\left(\varphi_1^{-1}\right), \left(\varphi_2^{-1}\right)}$$

But since

$$\left(R_{\lambda,\mu}\left(\phi^{-1}\right)f\right)z = \phi'(z)^{\frac{\lambda}{2}}\left|\phi'(z)\right|^{\lambda}\left(f\phi(z)\right)$$

Implies

$$m(\phi_{1}^{-1}\phi_{2}^{-1}) = \frac{\phi_{1}^{-1}(z)^{\frac{\lambda}{2}}\phi_{2}^{-1}(z)^{\frac{\lambda}{2}}|(\phi_{1}\phi_{2})(z)|^{\mu}f(\phi_{2}(\phi_{2})(z))}{R_{\lambda,\mu}\phi_{1}^{-1}R_{\lambda,\mu}\phi_{2}^{-1}}$$
$$= \frac{\phi_{1}^{1}(z)^{\frac{\lambda}{2}}\phi_{2}^{1}(z)^{\frac{\lambda}{2}}|\phi_{1}\phi(z)|^{\mu}f(\phi_{2}(\phi_{2})(z))}{R_{\lambda,\mu}((\phi_{1}^{1}\phi_{2}^{1})f)(z)}$$

Then

INTERNATIONAL PEER REVIEWED JOURNAL AND BOOK PUBLISHING

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

$$m\left(\phi_{1}^{-1}\phi_{2}^{-1}\right) = \frac{\phi_{1}\left(z\right)^{\frac{\lambda}{2}} - \phi_{2}\left(z\right)^{\frac{\lambda}{2}} \left|\phi_{1}\phi_{2}\left(z\right)\right|^{\mu} f\left(\phi_{2}\left(\phi_{1}z\right)\right)}{\phi_{1}'\left(z\right)^{\frac{\lambda}{2}} \left(\phi_{2}'\left(\phi_{1}\right)\left(z\right)\right)^{\frac{\lambda}{2}} \left|\phi_{1}\phi_{2}\left(z\right)\right|^{\mu} f\left(\phi_{2}\left(\phi_{1}z\right)\right)} = \frac{\left(\phi_{1}\phi_{2}\right)'\left(z\right)^{\frac{\lambda}{2}}}{\phi_{1}^{1}\left(z\right)^{\frac{\lambda}{2}} \left(\phi_{2}^{1}\left(\phi_{1}\right)\left(z\right)\right)^{\frac{\lambda}{2}}}$$

Notice that the right hand side of this equation is an analytic function of z in \mathfrak{D} and it is of constant modulus1 in view of the chain rule for differentiation therefore by the maximum modulus principle, this formula is independent of z for z in $\overline{\mathbb{D}}$. Hence we may take z = 0 in this formula and thus $m = m_{\omega}$ with $\omega = e^{i\pi N}$ so m is the multiplier associated with $\pi^{\#}$ is \overline{m} since $\overline{D}_{\lambda} = D_{N}^{+\#}$ it follows that if $\pi = \overline{D}_{\lambda}$ is the anti-holomorphic discrete series, then multiplier is m_{ω} where $\omega e = e^{i\pi N}$. The multiplier $m_{\omega}, w \in T$ are naturally bioequivalent (since $w \to [m_{\omega}]$) is clearly a group homomorphism from T onto $H^2(MOb,T)$ this amounts to verifying that m_{ω} is never exact for $w \neq 1$ this fact may be deduced from corollary (1-11) as follows. Identify Mob with $T \times D \operatorname{via} \varphi_{\alpha,\beta} \mapsto (\alpha,\beta)$ the low $T \times D$ is given by group on $(\alpha_1, \beta_1)(\alpha_2, \beta_2) = \left(\alpha_1\alpha_2, \frac{1 + \overline{\alpha}_2\beta_1\overline{\beta}_2}{1 + \alpha_2\overline{\beta}_1\beta_2}, \frac{\beta_1 + \alpha_2\beta_2}{\alpha_2 + \beta_1\beta_2}\right)$, the identity in $T \times D$ is (1,0) and inverse map is $(\alpha, \beta)^{-1} = (\overline{\alpha} - \alpha\beta)$ then the universal cover is naturally identified with $R \times D$ taking covering map. $R \times D \to T \times D$ to be $P(t, \beta) = (e^{2\pi i t}, \beta)$, the group low on $R \times D$ is determined by the

requirement that P be a group homomorphism as follows

$$(t_1,\beta_1)(t_2,\beta_2) = t + t_2 + \frac{1}{\pi} Im \log(1 + e^{-2\pi i t}\beta_1 \overline{\beta}_2 h) \frac{\beta_1 + e^{2\pi i t_2} \beta_2}{e^{2\pi i t_2} + \beta_1 \overline{\beta}_2}$$

To shows this we have

Let $\alpha_1 = e^{2\pi i t_1}$, $\alpha_2 = e^{2\pi i t_2}$. Substitute α_1 and α_2 in the following equation

$$(\alpha_1,\beta_1)(\alpha_2,\beta_2) = \left(\alpha_1\alpha_2,\frac{1+\alpha_2'\beta_1\overline{\beta}_2}{1+\alpha_2\beta_1'\beta_2},\frac{\beta_1+\alpha_2\beta_2}{\alpha_2+\beta_1\beta_2'}\right)$$

We get

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

$$\begin{split} &(\alpha_{1},\beta_{1})(\alpha_{2}\beta_{2}) = \left(e^{2\pi i t_{1}} \cdot e^{2\pi i t_{2}} \cdot \frac{1+e^{-2\pi i t_{2}}\beta_{1}\overline{\beta}_{2}}{1+e^{2\pi i t_{2}}\overline{\beta}_{1}\beta_{2}}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &= \left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\overline{\beta}_{2}\right) \left(1+e^{2\pi i t_{2}}\beta_{1}\overline{\beta}_{2}\right)^{-1}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &= \left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\overline{\beta}_{2}\right) \left(1+e^{-2\pi i t_{2}}\beta_{1}\overline{\beta}_{2}\right) \left(1+e^{-2\pi i t_{2}}\beta_{1}\overline{\beta}_{2}\right), \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}+e^{2\pi i t_{2}}\beta_{2}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right), \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{-2\pi i t_{2}}\beta_{1}\beta_{2}'\right)^{2}, \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}'\right)^{2}, \frac{\beta_{1}}{e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2}}\right) \\ &\left(e^{2\pi i \left(t_{1}+t_{2}\right)} \cdot \left(1+e^{2\pi i t_{2}}+\beta_{1}\overline{\beta}_{2$$

and this gives

$$(t_1, \beta_2)(t_2, \beta_2) = T_1 + T_2 + \frac{1}{\pi} \operatorname{Im} \log \left(1 - e^{-2\pi i t_2} \beta_1 \beta_2, \frac{\beta_1 + e^{2\pi i t_2} \beta_2}{e^{2\pi i t_2} + \beta_1 \overline{\beta}_2} \right)$$

Where (log) denote the principle branch of the logarithm on right halt plane.

The identity in $R \times D$ is (0,0) and the inverse map is $(t, \beta)^{-1} = (-t - e^{2\pi i t})$ and the kernel \tilde{Z} of the covering map P is identified with additive group Z via $n \to (n,0)$ so we choose a Borel branch of the argument function satisfying $\arg(\overline{Z}) = \arg(Z), z \in T$ we make an explicit choice of the Borel function $(\varphi, z) \to \arg(\varphi'(z))$ as follows $\arg \varphi'_{\alpha,\beta}(z) = \arg(\alpha) - 2 \operatorname{Im} \log(1 - \beta z)$ let's also choose function $s: T \times D \to R \times D$ as follows $S(\alpha, \beta) = (\frac{1}{2\pi}(\alpha), \beta)$ and easy computation shows that for these choices we have $S(\varphi_1 \varphi_2) S(\varphi_2^{-1}) S(\varphi_1^{-1}) = -n(\varphi_1 \varphi_2)$ for φ_1, φ_2 in Mob. Hence we get that for $w \in T, m_w = m_\chi$ where $\chi = \chi_w$ is the character n maps to w^{-n} of Z. Thus the map $w \to [m_w]$ is but a special case of the isomorphism $\chi \to m_\chi$ of corollary (1-11) to show the simple

www.iprjb.org

representation of the Moby's group let k be the maximal compact subgroup of Mob given by $\{\varphi_{\alpha,0} : \alpha \in T\}$ of course k is isomorphic to the circle group T via $via \alpha \to \varphi_{\alpha,0}$.

Definition (13):

Let π be a projective representation of Mob and we shall say π is normalized if π/k is an ordinary representation of k.

Lemma (14):

Any projective representation δ of Mob then δ/k is projective representation of k say with multiplier m. But $H^2(k)$ so there exists a Borel function $f: k \to T$ such that $m(x, y) = \frac{f(x)f(y)}{f(xy)}$, $x, y \in k$. Extend f to a Borel function $g: MOb \to T$. Define π by $\pi(x) = g(x)\delta(x), x \in MOb$ then π is normalized and equivalent to δ for $n \in Z$, let χ_n be the character of T given by $\chi_n(x) = x^{-n}, x \in T$ for any normalized projective representation π of Mob and $n \in Z$ let $V_n \pi = \{v \in \mathcal{H} : \pi(x)v = \chi_n(x)v_1, \forall x \in T\}$ then $\mathcal{H} = \bigoplus_{n \in Z} V_n \pi$. The subspace $V_n(\pi)$ are usually called the k-isotopic subspaces of \mathcal{H} put $d_n(\pi) = \dim V_n \pi$ and $T(\pi) = \{n \in Z : d_n(\pi) \neq 0\}$.

Theorem (15):

If T is an irreducible homogenous operator the T is a block shift. If π is a normalized representation associated with T then the blocks of T are precisely the *k*-isotopic subspaces.

$$V_n(\pi), \quad n \in T(\pi).$$

Proof:

If T is an irreducible block shift then the blocks of T are uniquely determined by T. Then

$$T(V_n(\pi)) \subseteq V_{n+1}(\pi) \text{For } n \in T(\pi)$$
(10)

Indeed since *T* is irreducible then equation (10) how that π is connected and $b \notin T(\pi)$ then (10) would imply that $\bigoplus_{n < b} V_n(\pi)$ is a non-trivial. Since is also unbounded by theorem (3-1-21) it

www.iprjb.org

follows that be re-indexing, the index can be taken to be either all integer or the non-positive integers, therefore *T* is a block shift. So it only remains to prove (10). To do this, fix $n \in T(\pi)$ and $v \in_n (\pi)$ for $x \in k$ we have $\pi(x)v = \chi_n(x)v$. Consequently

$$\pi(x)Tv = \pi(x^{-1})^* Tv$$

= $\pi(x^{-1})^* T(x^{-1})(\pi(x)v)$
= $(x^{-1}T)^* T(x^{-N}v) = x^{-((n+1))}Tv$

So $Tv \in V_{n+1}(\pi)$, this proves (10).

Lemma (16):

Let *T* is any homogenous weighted shift, let be the projective representation of associated with *T*. Then up to equivalent π is one of the representations further:

- (a) If T is a forward shift then the associated representation is holomorphic discrete series.
- (b) If *T* is a back word shift then the associated representation is auti-holomorphic discrete series.
- (c) If T is a bilateral shift then the associated representation is either principle series or complementary series.

Theorem (17):

Up to unitary equivalence the only homogenous weighted shifts are the ones.

Proof:

Let *T* be homogenous weighted shift. If *T* is reducible we are done by theorem (1-2). So assume *T* is irreducible then by theorem (1-4) there is a projective, representation π of Mob associated with *T*. By lemma (1-3) π is one of the representation. Further replacing *T* by T^* if necessary, we may assume that T is either a foreword or bi-lateral shift.

According π is either a homomorphic discrete series representation or a principal complementary series representation. Hence $\pi = R_{\lambda,\mu}$ for some parameters $\lambda\mu$ recall that the representation space H_{π} is the closed span of the function f_n , $n \in I$ where $f_n(z) = Z^n$, $n \in I$

www.iprjb.org

and $I \in Z^+$ in the former case and I = Z in the letter case the element's f_n , $n \in I$ form a complete orthogonal set of vectors in \mathcal{H}_{π} , but these vectors are not unit vectors. Their norms are as given before .Since T is a weighted shift with respect to the orthogonal basis of obtained \mathcal{H}_{π} by normalizing $f_n s$ where are scalar an > 0, $n \in I$ such that

$$Tf_n = anf_{n+1}, \quad n \in I$$

Notice that since the $f_n s$ are not normalized the numbers an are not the weights of the weighted shift *T*. These weights are given by follows there the adjoin T^* acts by $w_n = a \|f_{n+1}\|/\|f\|$, $n \in I$

Its follows that the adjoint act by $T^* f_n = \frac{\|f_n\|^2}{\|f_{n-1}\|^2} an - 1f_{n-1}$, $n \in I$ where one puts $a_{-1} = 0$ in case

 $I = Z^+$ let M be multiplication operator on \mathcal{H}_{π} define by $Mf_n = f_{n+1}$, $n \in I$.

Notice that for each representation is corresponding operator M. Also in case M is invertible $M^{*^{-1}}$ is also exist. Let B be a fixed but arbitrary element of D and let $\varphi_{\beta} = \varphi_{-1,\beta} \in$ Mob. Notice that φ_{β} is an involution and this simplifies the following computation of $\pi(\varphi_{\beta})$ a little bit indeed a straight foreword calculation shows that for $\pi = R_{\lambda,\mu}$ we have

$$\left\langle \pi(\varphi_B) f_m, f_n \right\rangle = C(-1)^n \overline{B}^{n-m} \left\| f_n \right\|^2 \sum_{k \ge (m-n)^+} C_k(m,n) r^k , 0 \le r \le 1$$
(11) where we

have put $r = |\beta|^2$, $C = \varphi_{\beta}^1(0)^{\frac{N}{2+m}}$ and $C_k(m,n) = \binom{-N-\mu-m}{k+n-\mu}\binom{-\mu+m}{k}$ since π is associated

with *T* from the following equation (4) we have $T\pi(\varphi_{\beta})(I - \overline{\beta}T) = \pi(\varphi_{\beta})(\beta I - T)$ we analysis the two sides of the above equation we get

$$T(\pi)(\varphi_{\beta}) - T\pi(\varphi_{\beta})\overline{\beta}T = \pi(\varphi_{\beta})\beta - \pi(\varphi_{\beta})T$$

Implies

$$T\pi(\varphi_{\beta}) + \pi(\varphi_{\beta})T = \pi(\varphi_{\beta})\beta + \overline{\beta}T\pi(\varphi_{\beta})T \text{ and } \overline{\beta}T\pi(\varphi_{\beta})T + \pi(\varphi_{\beta})T = T\pi(\varphi_{\beta})T + \pi(\varphi_{\beta})T$$

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

where m, n fix in I, we evaluate each side of the above equation at and take the inner product of the resulting vectors with we have for the instance

$$\left\langle T\pi(\varphi_{\beta})Tf_{m},f_{n}\right\rangle = \left\langle \pi(\varphi_{\beta})Tf_{m},T^{*}f_{n}\right\rangle = a_{m}\overline{a}_{n-1}\frac{\left\|f_{n}\right\|^{2}}{\left\|f_{n-1}\right\|^{2}}\left\langle \pi(\varphi_{\beta})f_{m+1},f_{n-1}\right\rangle$$

and similarly for the other three terms . Now substituting from equation (11)

we get
$$\pi(\varphi_{\beta})f_{m+1}, f_{n+1} = C(-1)^n \overline{B}^{n-m} ||f_n||^2 \sum_{k \ge (m-n+2)} C_k(m+1, n-1)r^k$$
, by applying equation

(11) in the main equation we have

$$\left\langle \pi(\varphi_{\beta}) I f_{m}, T^{*} f_{n} \right\rangle = a_{m} \overline{a}_{n-1} \frac{\left\| f_{n} \right\|^{2}}{\left\| f_{n-1} \right\|^{2}} C(-1)^{n} \overline{B}^{n-m} \left\| h_{n-1} \right\|^{2} \sum_{k \ge (m-n+2)} C_{k}(m+1, n-1) r^{k}$$

by comparing with the equation (11) we get

$$a_{m}\overline{a}_{n-1}C(-1)\overline{B}^{n-m^{n}} \|f_{n}\|^{2} \sum_{k \ge (m-n+2)} C_{k}(m+1,n-1)r^{k} = C(-1)^{n} \overline{B}^{n-m} \|f_{n}\|^{2} \sum_{k \ge (m-n+2)} C_{k}(m,n) r^{k}$$

where $0 \le r \le 1$,

$$a_{m}\overline{a}_{n-1}\sum_{k\geq (m-n+2)} C_{k}(m+1,n-1)r^{k} = \sum_{k\geq (m-n+2)} C_{k}(m,n)r^{k}$$

We canceling the common factor $C(-1)^{n-1} \|f_n\|^2 \overline{B}^{n-m}$ we have the following identity in the indeterminate *r* which obtained from the above

$$\overline{a}_{n-1} \sum_{k \ge (m-n+2)} C_k(m,n-1) r^k = a_m \sum_{k \ge (m-n+2)} C_k(m+1,n) r^k$$
(12)

Taking m = n in equation (12) and equating the coefficients of r' we obtain $(n+1-\mu)a_n = (n-\mu)\overline{a}_{n-1} + 1 \ n \in I \ (13)$

Research ISSN 2518-881X Vol 6, Issue 1, No.1, pp 1- 19, 2022

www.iprjb.org

REFERENCE

- B. Bagchi and G.Misra Homogenous tuples of multiplication operators on twisted Bergman space (1996).
- B. Bagchi and G.Misra the Homogenous shifts J.Funct. Anal 204, (2003), 109-122.
- B. Bagchi and G.Misra Homogenous tuples of multiplication operators on twisted Bergman space J, Funct (1996).
- Clark .D. N and Misra G, on some homogenous contraction and unitary representation of SU (1, 1), J, OP, theory 30, (1993), 153-170.
- G Misra and N.SN. Sastry, Homogenous tuples of operators and homomorphic discrete series representation of some classical group J. Operator theory, (1990).23-32...