
International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

1

DEVELOPING CONCEPTUAL FRAMEWORK OF SOFTWARE DEFECT

PREDICTION IN SOFTWARE TESTING: THE CASE OF ETHIOPIAN SOFTWARE

INDUSTRIES

Musa Dima Genemo

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

2

Developing Conceptual Framework of Software

Defect Prediction in Software Testing: The Case

of Ethiopian Software Industries

1*Musa Dima Genemo (2013)

Department of Computer Engineering
*Corresponding Author’s Email:

musa.ju2002@gmail.com

Article History

Received 15th February 2023

Received in Revised Form 25th February 2023

Accepted 8th March 2023

Abstract

Purpose: Software defect prediction is one of the most

active research areas in software engineering. As our

dependency on software is increasing, software quality

is becoming gradually more and more important in

present era. Software used almost everywhere and in

every tread of life. Software consequences such as

fault and failures may diminish the quality of software

which leads to customer dissatisfaction. Different

points that are related to the current work had been

discussed.

Methodology: This research contains a detailed

explanation of the scientific methods and

methodologies used for the design of proposed

framework. Primary and secondary source of data has

been used.

Findings: Due to the tremendous amount of data

generated daily from fields such as business that

software has resulted in the generation of tremendous

amount of defected data. As the organizations struggle

to handle and utilize effectively all the information

available in order to provide better products and

services and gain competitive advantage, defect

separation and the so called “big data” analytics are

two fields that currently constitute matter of concern

and discussion.

Unique Contribution to Theory, Practice and

Policy: There are different research areas in defect

prediction using big data analytics defect

segmentations one of the issues. Defect Segmentation

is an important component of much organization, and

the algorithm designed in this work is expected to be a

significant contribution to the field, and mainly to

researchers working on various aspects of defect

prediction defect segmentation using big data

analytics. Therefore, the researchers in the area can use

the algorithm or the implemented system for

processing segmentation as component in their

research, mainly on machine learning applications.

Keywords: Software Defect, Defect Prediction,

Software Testing, Software Security

©2023 by the Authors. This article is an open access

article distributed under the terms and conditions of

the Creative Commons Attribution CC by license

(https://creativecommons.org/licenses/by/4.0/

http://www.iprjb.org/
mailto:musa.ju2002@gmail.com
https://orcid.org/
DOI: 10.47604/ijts

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

3

INTRODUCTION

Software defect prediction is one of the most active research areas in software engineering. As our

dependency on software is increasing, software quality is becoming gradually more and more

important in present era. Software used almost everywhere and in every tread of life. Software

consequences such as fault and failures may diminish the quality of software which leads to

customer dissatisfaction.

Software life cycle is a human activity, so it is impossible to prevent the injection of defects but it

is possible to produce the software with few defects. (Naheed Azeem, Shazia Usmani, 2011) To

deliver defect free software it is imperative to predict and fix the defects as many as possible before

the product delivers to the customer. Due to the increasing of complexity and the constraints under

which the software is developed, it is too difficult to produce quality software. Therefore, defect

prediction before delivery can contribute significantly to the success of project in terms of quality

and cost. Defects in software product cause much loss of time and money.

Learning from past experience, it would be possible to predict defects in advance for new software

products. Finding and fixing the defects after delivery usually consumes a large portion of the

project budget. The aim of this research is to explore the different issues and problems in the area

of defect prediction as well as provide the solutions to improve the product quality via defect

prediction mechanism (20).

Researchers have devised and implemented excess of bug prediction approaches varying in terms

of accuracy, complexity and the input data they require. However, the absence of an established

benchmark makes it hard, if not impossible, to compare approaches. In this paper benchmark for

defect prediction has been resented, in the form of a publicly available data set consisting of several

software systems and provides an extensive comparison of the explanative and predictive power

of well-known bug prediction approaches. Recent studies of software defect prediction typically

produce datasets, methods and frameworks which allow software engineers to focus on

development activities in terms of defect-prone code, thereby improving software quality and

making better use of resources.

Many software defect prediction datasets, methods and frameworks are published disparate and

complex, thus a comprehensive picture of the current state of defect prediction research that exists

is missing. This study aims to identify and analyze the research trends, datasets, methods, and

frameworks used in software defect prediction. And finally, the study had contributed a framework

for defect prediction. This study has been undertaken as a systematic literature review as a process

of identifying, assessing, and interpreting all available research evidence with the purpose to

provide answers for specific research questions. Analysis of the selected primary studies revealed

that current software defect prediction research focuses on five topics and trends: estimation,

association, classification, and clustering and dataset analysis. The total distribution of defect

prediction methods is as follows, 77.46% of the research studies are related to classification

methods, 14.08% of the studies focused on estimation methods, and 1.41% of the studies

concerned on clustering and association methods. In addition, 64.79% of the research studies used

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

4

public datasets and 35.21% of the research studies used private datasets. Nineteen different

methods have been applied to predict software defects. From the nineteen methods, seven most

applied methods in software defect prediction are identified [3].

Researchers proposed some techniques for improving the accuracy of machine learning classifier

for software defect prediction by assembling some machine learning methods, by using boosting

algorithm, by adding feature selection and by using parameter optimization for some classifiers.

This study has also focused on identifying the frameworks that are highly cited and filling gaps of

the existing framework.

Statement of the Problem

It is known that any software and any service delivered for customer is measured by security,

energy efficiency, reliability, error free, and fault tolerance level. Having this in mind if we

examine the current defect prediction method in software testing in terms of defect prediction level

currently Users, company and developers may face many problems in different countries.

The current Defect prediction mechanism has no benchmark to predict software as defect and

defect free. However, the absence of an established benchmark makes it hard, it is not impossible,

to compare approaches. The absence of predicting whether a given code segment is defected or

not and predicting the magnitude of the possible defect, if any, with respect to various viewpoints

such as density, severity, or priority. This may open the door for the system familiarity reason.

In Addition to the above listed problem there is also a gap in differing version control and change

management systems in testing, Inconsistent identification of software defects in defect prediction,

Lack of mapping between software structures (files) and requirements are the issues in defect

prediction.

The above-mentioned problem is the most critical from point of view of the research of this paper

and that must be solved by this study. The current available framework and study focus on

functional aspect of the system based on generating data from functional requirement of the

system. Even in this case there are many gaps in considering boundary testing. Many literatures

reviewed for purpose of this study focus on what function and what security the system should

have. The other gap expected to be filled in this study is estimating the defect causing, potential of

a given software project has a very critical value for the reliability of the project.

The major purpose of this study is to investigate framework of software defect prediction in

software testing and implementing a framework defect prediction.

Organization of the Thesis

The manuscript is written according to following sequence. Sections 1 and 2 are comprised of the

introduction part and the literature insight respectively. Section 3 encompasses the proposed

approach. Section 4 depicts results and discussion with details of performance evaluation

experiments and Time graph. Section 5 shows the paper’s conclusions

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

5

LITERATURE REVIEW

This chapter present review of literature and related work of software defect prediction. Different

points that are related to the current work had been discussed. Extensive literature review is

conducted on software defect prediction in order to obtain in-depth understanding of the area and

to find the best conceptual for software defect prediction.

The history of defect prediction studies was about last 50 years or 5 decades. The first study

estimating the number of defects was conducted by (Akiyama., 1971). Based on the assumption

that complex source code could cause defects, Akiyama built a simple model using lines of code

(LOC) since LOC might represent the complexity of software systems. However, LOC is too

simple metric to show the complexity of systems. In this reason, (McCabe, 1976) and (Halstead,

1977) proposed the cyclamate complexity metric and Halstead complexity metrics in respectively.

These metrics were very popular to build models for estimating defects in 1970s and the early of

(N. Fenton and M. Neil, 1999).Having said that though, the models studied in that period were not

actually prediction model but just fitting model that investigated the correlation between metrics

and the number of defects .These models were not validated on new software modules. To resolve

this limitation of previous studies (Shen et al, 1985) built a linear regression model and test the

model on the new program modules.

However, (Munson et al , 1992)claimed that the state-of-the art regression techniques at that time

were not precise and proposed classification models that classify modules into two groups, high

risk and low risk. The classification model actually achieved 92% of accuracy on their subject

system. However, Munson et al.’s study still have several limitations such as no metrics for object-

oriented (OO) systems and few resources to extract development process data. As Shen et al.

pointed out at that time, it was not possible to collect error fix information informally conducted

by individual developers in unit testing phase’s .In terms of OO systems, (Chidamber) and

(Kemerer) proposed several object-oriented metrics in 1994 and was used by (Basili et al) to

predict defects in object-oriented system.

In 1990s, version control systems were getting popular, development history was accumulated into

software repositories so that various process metrics were proposed from the middle of 2000. In

2000, there had been existed several limitations for defect prediction. The first limitation was the

prediction model could be usable before the product release for the purpose of quality assurance.

However, it would be more helpful if we can predict defects whenever we change the source code.

To make this possible (Mockus et al).Proposed a defect prediction model for changes. Recently,

this kind of models is called as just-in-time (JIT) defect prediction models. JIT prediction models

have been studied by other researchers in recent years.

Software defects are errors, flaws, bugs, mistakes, failures or faults in computer programs or

systems that generate inaccurate/unexpected outcome, or preclude software from its intended

behavior. (Gayathri M, A. Sudha, 2014) Software defect prediction is a current and hot issue of

software companies. Due to many reasons software’s are always failing. The reason of this faulty

is due to penetrating defect software to the market without appropriate testing. To solve this

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

6

problem many studies has been employed. But not yet solved the problem fully from the beginning.

According software defect prediction definition software defect prediction is testing software for

error and prone free.

Inline to this (Turhan, 2007)has proposed a statistical defect predictor model with two major

differences from the existing ones. Using only static code measures for the research avoids any

kind of human error and subjectivity from the datasets. As noted by(Wahyudin, Ramler, and Biffl,

2009)a framework proposed for conducting software defect prediction as an aid for the practitioner

establishing defect prediction in the context of a particular project or organization and as a guide

to the body of existing studies on defect prediction.

As to (Umar, 2013)explained statistical model, defect prediction for upcoming software releases

or projects. To predict software testing defects using statistical models and evaluate the accuracy

of the statistical defect prediction model, he used 20 past release data points of software project,

parameters and builds a model by applying descriptive statistics, correlation and multiple linear

regression models with 95%confidence intervals (CI). They analyzed an extensive historical

dataset of software releases to identify factors influencing parameters of defect prediction model.

He found strong correlation between defects and test team size, total number of test cases executed,

total number of components delivered. In this analysis he used multiple regression analysis for

estimating software defects. Inline to this (Xiaoxing , Ke , and Xin , 2014)introduced a learning-

to-rank approach to construct software defect prediction models by directly optimizing the ranking

performance. The work includes two aspects: one is a novel application of the learning-to-rank

approach to real-world data sets for software defect prediction, and the other is a comprehensive

evaluation and comparison of the learning-to-rank method against other algorithms that have been

used for predicting the order of software modules according to the predicted number of defects.

In addition to this (Saiqa , Luiz and Faheem , 2015)Study indicates that the public available data

sets of software modules and provides comparative performance analysis of different machine

learning techniques for software bug prediction. Results showed most of the machine learning

methods performed well on software bug datasets. According to (Saiqa , Luiz and Faheem ,

2015)Effective bug’s prediction is totally dependent on a good prediction model. As this study

indication the software defect can be predicted if and only if the benchmark of defect is clearly

stated before starting software testing.

As to (Wanjiang ,Lixin ,Tianbo,Xiaoyan, Yi , 2014)an approach to predict residual defects, which

applies machine learning algorithms (classifiers) and defect distribution model includes two steps.

Firstly, use machine learning Algorithms to get defect classification table, then confirm the defect

distribution trend referring to several distribution models. According to the study finding, before

starting software testing, we have to have benchmark data set that helps as to classify software as

defect or not defect.

Inline to this (Bharavi and K.K., 2012)proposed a new Support Vector based Fuzzy Classification

System (SVFCS) for defective module prediction. In the proposed model an initial rule set is

constructed using support vectors and Fuzzy logic. Rule set optimization is done using Genetic

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

7

algorithm. The new method has been compared against two other models reported in recent

literature viz. Naive Bayes and Support Vector Machine by using several measures, precision and

probability of detection and it is found that the prediction performance of SVFCS approach is

generally better than other prediction approaches. From this study there is doubt from researchers

that the classification based on support vector machine and fuzzy logic. Hence testing without

benchmark data resulted software faulty. According to (M .and G.S. Anandha, 2015)carried out

Experiments on analyzing the defect prediction using different types of classifiers such as NB,

SVM, and KNN etc. The classification accuracy of the SVM classifier performs better when

compared to other classifiers. The advantage of SVM is that they provide better performance. The

main disadvantage of SVM is that it does not work well on public datasets.

(Kritika Verma Pradeep Kumar , 2015)Researchers have performed descriptive survey and

analysis to provide efficient results for defect prediction in software systems and various

techniques have been used in order to arrange their performance capacity. Neural Network being

the best followed by Decision Tree and Bayesian Network, then the SVM and lastly comes the

KNN method. It is suggested that Ensemble Machine learning and One class SVM are two areas

that can be used extensively in future. But according to these researchers SVM technique does not

perform well so it’s better to focus on Ensemble Machine Learning in future to predict defects.

(Fenton,Norman E.,Krause,Paul.,Neil,Martin., 2001)The application of neural networks to the

problem of defect prediction has received a great of attention. Neural network has successfully

been applied to predict defects in a chemical processing plant .the results were 10 to 20 times better

than the application of traditional method.

 (Song,Q., Jia,Z.,Shepperd,M.,Ying,S.,& Liu,J, 2011)Suggested a general software defect

prediction framework supporting unbiased/comprehensive comparison between competing

prediction systems. The framework includes scheme evaluation and defect prediction. Scheme

evaluation analyzes prediction performance of competing schemes for specific historical data sets.

The defect predictor constructs models based on evaluated learning schemes predicting software

defects with new data according to a constructed model. To demonstrate the proposed framework’s

performance, simulations were undertaken on publicly available software defect datasets. Results

demonstrated the requirement of various learning schemes for differing datasets (i.e., no scheme

dominates) and that small details in conducting evaluations conduct completely reverses findings.

The proposed framework is effective and not liable for bias than earlier approaches.

(Juan and Marcelo , 2015)The researchers have included framework more combinations of

learning schemes than other proposals. There are more possibilities to find better learning schemes

for each data set. The genetic approach has presented better performance in the majority of the

cases, representing eight of ten data sets. The researcher put the gap as it is necessary to include

more data sets with different size, noise level and imbalance data from public and private

repositories.

(K.B.S , Dr.B.V., Dr K.V, 2013)Describes framework to produce software defect from the

historical database and also present one pass data mining algorithm used find rules to predict

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

8

software defects. The experimental results show that, one pass algorithm generate rules for

software defect prediction with consider amount of time and with better performance.

 According to (Juan Marcelo and K.B.S , 2013)Studies in Software defect prediction framework

for example, 2013 (Dr K.V.Sambasiva and Marcelo , 2015). Therefore this research gap initiates

me to carry out research in this area with aim to asses’ implementation of developing conceptual

framework of software defect prediction .This study therefore focus on the gap between what

developing conceptual framework for software defect prediction in software testing in the case of

Ethiopian software industries under take theoretically and what it in fact (implementation)

achieves in context of Ethiopian software company.

Research Contribution

This research contains a detailed explanation of the scientific methods and methodologies used for

the design of proposed framework. The constructionist of the framework was based on a

combination of literature and empirical data collected from the users and professional persons

(Software developer).

Table 1: Research placed into DRM (Design Research Methodology)

Identification Problem definition

Objective for solution Review on defect prediction

Review on software testing

Design and development Defect prediction goal

Discussion with professionals

Demonstration Showing prototype to advisor

Discussion with Professionals

Evaluation Expert evaluation (software developer)

Communication Suggestion from expert

Evaluation

Future work recommendations

Data Source

There is data source for this study. Primary and secondary source of data has been used. The

primary data source of this study is software developer of selected software company and selected

software development unit of the university. The secondary data source of this study is literature

review, software company report, professional blogs and forums. Testing is the traditional process

for identifying defects. However, when projects’ size grows in lines of code and complexity

algorithm finding and fixing errors gets more difficult and computationally expensive with the use

of sophisticated testing and evaluation procedures. According to Boehm study result finding and

fixing a problem after delivery is more expensive, in terms of cost and effort, than fixing it during

the early stages of software life cycle[]. Early detection of fault-prone software components

enables verification experts to concentrate their time and resources on the problem areas of the

software system under development.

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

9

Software Defect Prediction Metrics

Defect prediction metrics play the most important role to build a statistical prediction model.

Most defect prediction metrics can be categorized into two kinds: code metrics and process

metrics. Code metrics are directly collected existing source code while process metrics are

collected from historical information archived in various software repositories such as version

control and issue tracking systems. Code metrics also known as product metrics measure

complexity of source code. Its ground assumption is that complexity source is more bug prone.

Defect Prediction Framework

Figure 1: Defect Prediction Framework

Table 2: Data Adopted from NASA Metrics Data Program (MDP)

Data Set MDP

CMI 505

JM1 10 878

KC1 2107

KC2 n.a

KC3 458

KC4 125

MC1 9466

MC2 161

MW1 403

PC1 1107

PC2 5589

PC3 1563

PC4 1458

PC5 17186

Data Predictor

Defect type

Identification

Predic

tion

Result

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

10

The most common usage for the NASA data sets (as reported in the literature) is in binary

classification experiments. Typically, a classifier is trained on binary labeled data, and then each

new set of module metrics is predicted as belonging to either a ‘faulty’ module, or a

‘non-faulty’ module. This is clearly a huge simplification of the real world, for two main reasons.

Firstly, fault quantity is disregarded: there is typically no distinction between a

module with one reported fault and a module with 31 reported faults, they are both simply labeled

as ‘faulty’. Secondly, fault severity is disregarded: there is typically no distinction between a trivial

fault and a life-threatening fault. Despite these crude simplifications, binary classification defect

prediction studies continue to be very prolific. It is widely accepted by the data mining community

that in order to accurately assess the potential real-world performance of a classification model,

the model must be tested against entirely different data from that upon which it was trained.

FINDINGS
Due to the tremendous amount of data generated daily from fields such as business that software

has resulted in the generation of tremendous amount of defected data. As the organizations struggle

to handle and utilize effectively all the information available in order to provide better products

and services and gain competitive advantage, defect separation and the so called “big data”

analytics are two fields that currently constitute matter of concern and discussion.

During the research, a comprehensive literature review in the fields of defect prediction, user’s

engagement, big data and data mining was conducted. The main objective of the research was to

answer the main research question. The main deliverable of this research, which constitutes an

answer to the main research question, was a framework that shows defect prediction types able to

assist error free and user friendly software objectives, and the techniques that can be used for big

data analysis are suitable for segmenting e-commerce users according to each of, the e-commerce

user’s segmentation types

CONCLUSION AND RECOMMENADTIONS

Conclusion

 Defect segmentation using big data analytics is a task of defect prediction into homogenous group

based on their preference. It is a research area in the field of software engineering in relation with

big data analytics. The problem to segment defect using big data analytics is software businesses

are currently building their defect testing strategies and thus they do not have well defined

framework. Therefore, marketers do not provide data analysts with the appropriate information,

while proceeding with valuable and effective defect segmentation becomes difficult, therefore

while segmenting we have no one fit-size segmentation. Defect prediction is a core process for

assisting a software marketing strategy. However, there is limited scientific research related to the

field. Huge amount of defect prediction data is continuously generated. However, there was no

scientific research found for the use of big data tools in defect prediction. In the world of business,

a gap between defect prediction and data analysts emerges. Normally, software sellers should be

able to select combinations.

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

11

Recommendations

There are different research areas in defect prediction using big data analytics defect segmentations

one of the issues. Defect Segmentation is an important component of much organization, and the

algorithm designed in this work is expected to be a significant contribution to the field, and mainly

to researchers working on various aspects of defect prediction defect segmentation using big data

analytics. Therefore, the researchers in the area can use the algorithm or the implemented system

for processing segmentation as component in their research, mainly on machine learning

applications. As a future work Researcher would like suggest the following points:

 A general guideline for effective defect prediction segmentation is needed, while the opportunities

that machine learning offer for defect prediction segmentation should be further explored.

 In feature research, the frameworks could be tested as a whole on more than one real situation.

The actual usefulness of defect prediction types for each of the objectives, according to the first

framework can be tested on a real situation. Starting with a certain defect objective certain

prediction segmentation types can be selected to be analyzed for creating actionable defect free

SW.

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

12

REFERENCES

D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine Learning,

6(1):1573–0565, January 1991.

M. L. Berenson, M. Goldstein, and D. Levine. Intermediate Statistical Methods and Applications:

A Computer Package Approach. Prentice-Hall, Englewood Cliffs, NJ, 1983.

G. Boetticher, T. Menzies, and T. Ostrand. Promise repository of empirical software engineering

data. http://promisedata.org/, 2007.

A. C. Cameron and P. K. Trivedi. Regression Analysis of Count Data. Cambridge University

Press, 1998.

Z. Chen, T. Menzies, D. Port, and B. Boehm. Finding the right data for software cost modeling.

IEEE Software, 22(6):38–46, November 2005.

J. T. de Souza, N. Japkowicz, and S. Matwin. Stochfs: A framework for combining feature

selection outcomes through a stochastic process. In Proceedings of the 9th European

Conference on Principles and Practice of Knowledge Discovery in Databases, pages 667–

674, Porto, Portugal, October 3-7 2005.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, June

2006.

U. M. Fayyad and K. B. Irani. On the handling of continuous-valued attributes in decision tree

generation. Machine Learning, 8:87–102, 1992.

K. Gao, T. M. Khoshgoftaar, and H. Wang. An empirical investigation of filter attribute selection

techniques for software quality classification. In Proceedings of the 10th IEEE

International Conference on Information Reuse and Integration, pages 272–277, Las

Vegas, Nevada, August 10-12 2009.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine

Learning Research, 3:1157–1182, March 2003.

M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data

mining. IEEE Transactions on Knowledge and Data Engineering, 15(6):1437 – 1447,

Nov/Dec 2003.

S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, 2nd edition, 1998.

G. Ilczuk, R. Mlynarski, W. Kargul, and A. Wakulicz-Deja. New feature selection methods for

qualification of the patients for cardiac pacemaker implantation. In Computers in

Cardiology, 2007, pages 423–426, Durham, NC, USA, 2007.

Y. Jiang, J. Lin, B. Cukic, and T. Menzies. Variance analysis in software fault prediction models.

In Proceedings of the 20th IEEE International Symposium on Software Reliability

Engineering, pages 99–108, Bangalore-Mysore, India, Nov. 16-19 2009.

http://www.iprjb.org/

International Journal of Technology and Systems

ISSN 2518-881X (Online)

Vol.8, Issue 1, No.1, pp 1 – 13, 2023

www.iprjb.org

13

G. H. John and P. Langley. Estimating continuous distributions in Bayesian classifiers. In

Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, volume 2,

pages 338–345, San Mateo, 1995.

K. Jong, E. Marchiori, M. Sebag, and A. van der Vaart. Feature selection in proteomic pattern data

with support vector machines. In Proceedings of the 2004 IEEE Symposium on

Computational Intelligence in Bioinformatics and Computational Biology, Oct 7-8 2004.

S. A. Julious. Using confidence intervals around individual means to assess statistical significance

between two means. Pharmaceutical Statistics, 3:217–222, 2004.

T. M. Khoshgoftaar, L. A. Bullard, and K. Gao. Attribute selection using rough sets in software

quality classification. International Journal of Reliability, Quality and Safety Engineering,

16(1):73–89, 2009.

T. M. Khoshgoftaar, M. Golawala, and J. V. Hulse. An empirical study of learning from

imbalanced data using random forest. In Proceedings of the 19th IEEE International

Conference on Tools with Artificial Intelligence, volume 2, pages 310–317, Patras,

Greece, Oct. 29-31 2007.

T. M. Khoshgoftaar, Y. Xiao, and K. Gao. Assessment of a multi-strategy classifier for an

embedded software system. In Proceedings of 18th IEEE International Conference on

Tools with Artificial Intelligence, pages 651–658, Washington, DC, USA, November 13-

15 2006.

K. Kira and L. A. Rendell. A practical approach to feature selection. In Proceedings of 9th

International Workshop on Machine Learning, pages 249–256, 1992.

A. G. Koru, D. Zhang, K. E. Emam, and H. Liu. An investigation into the functional form of the

size-defect relationship for software modules. IEEE Transactions on Software

Engineering, 35(2):293–304, 2009.

S. Le Cessie and J. C. Van Houwelingen. Ridge estimators in logistic regression. Applied

Statistics, 41(1):191–201, 1992.

K. Lee. Combining multiple feature selection methods. In Mid-Atlantic Student Workshop on

Programming Languages and Systems (MASPLAS’02), pages 12.1–12.9, 2002.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for

software defect prediction: A proposed framework and novel findings. IEEE Transactions

on Software Engineering, 34(4):485–496, 2008.

H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering.

IEEE Transactions on Knowledge and Data Engineering, 17(4):491–502, 2005.

http://www.iprjb.org/

